Return to search

Molecular modeling and Monte Carlo simulation of concentrated aqueous alkali halide solutions at 25 C

A study of concentrated aqueous alkali halide solutions is made at the molecular level, through modeling and computer simulation of their structural and thermodynamic properties. It is found that the HNC approximation is the best integral equation theory to predict such properties within the framework of the primitive model (PM). The intrinsic limitations of the PM in describing ionic association and hydration effects are addressed and discussed in order to emphasize the need for explicitly including the water molecules in the treatment of aqueous electrolyte solutions by means of a civilized model (CM).
As a step toward developing a CM as simple as possible, it is shown that a modified version of the SPC model of liquid water in which the Lennard-Jones interaction between intermolecular oxygen sites is replaced by a hard core interaction, is still successful enough to predict the degree of hydrogen bonding of real water. A simple civilized model (SCM) (in which the ions are treated as hard spheres interacting through Coulombic potentials and the water molecules are simulated using the simplified SPC model) is introduced in order to study the changes in the structural features of various aqueous alkali halide solutions upon varying both the concentration and the size of the ions.
Both cations and anions are found to be solvated by the water molecules at expense of a breakdown in the hydrogen-bonded water network. Hydration numbers are reported for the first time for NaBr and KBr, and the first simulation-based estimates for LiBr, NaI and KI are also obtained. In several cases, values of the hydration numbers based on the SCM are found to be in excellent agreement with available experimental results obtained from x-ray diffraction measurements.
Finally, it is shown that a neoprimitive model (NPM) can be developed by incorporating some of the structural features seen in the SCM into the short-range part of the PM interionic potential via a shielded square well whose width and depth's temperature coefficient can be determined from a fit of experimental data for the osmotic coefficient and heat of dilution, respectively.

Identiferoai:union.ndltd.org:RICE/oai:scholarship.rice.edu:1911/16753
Date January 1994
CreatorsLlano-Restrepo, Mario Andres
ContributorsChapman, Walter G.
Source SetsRice University
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Text
Format594 p., application/pdf

Page generated in 0.0019 seconds