Return to search

The local-density-functional theory : application to atoms and molecules

The generalized local-spin-density functional (G-LSD) theory is proposed which avoids (a) the physical restriction used in the generalized exchange local-spin-density functional (GX-LSD) theory; (b) the homogeneous electron-density approximation in the Hartree-Fock-Slater (HFS) theory and in the Gaspar-Kohn-Sham (GKS) theory; and (c) the time-consuming step to search the optimal exchange parameter for each atom or ion in the X$ alpha$ and $ Xi$a theories. Theoretically, the G-LSD theory is more rigorous than the GX-LSD, HFS, GKS, and $ Xi$a theories. Numerically, the statistical total energies for atoms are better in the G-LSD theory than in the GKS theory. / Ionization potentials and electron affinities of atoms, the stability of singly and doubly charged negative ions, and the electronegativities, and hardnesses of the fractional charged atoms with Z $<$ 37 are calculated by the SIC-GX-LSD theory with the GWB Fermi-hole parameters and electron-correlation correction. / The self-interaction correction (SIC) is introduced into the multiple-Scattering X$ alpha$ (MS-X$ alpha$) method and used to calculate some molecules and molecular anions. The results show that the ionization potentials from the negative of the one-electron eigenvalues are as good as those obtained in the transition state calculation and in very good agreement with experiment.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.74535
Date January 1990
CreatorsGuo, Yufei
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001167575, proquestno: AAINN66366, Theses scanned by UMI/ProQuest.

Page generated in 0.0055 seconds