Return to search

Design and characterization of integrated-optic-based chemical sensors

A novel line of integrated-optic-based chemical sensors was developed. The sensors are based on modification of the optical cavity of a single-mode semiconductor distributed Bragg reflector (DBR) laser. A sensitive layer changes its refractive index in presence of a specific chemical, thus changing the effective refractive index of the section and the optical length of the cavity. This results in laser frequency shift measured either directly or by heterodyne detection using a reference laser as the second source. It is shown that DBR-laser-based sensors can achieve in principle a much higher sensitivity than passive sensors, such as Mach-Zehnder interferometers, due to the narrow linewidth of DBR lasers. The theory of DBR-laser-based sensors is described. It allows optimizing the sensitive section length and field confinement in the sensitive layer for the lowest detection limit. The optimum parameters depend on cavity losses and absorption of the sensitive material. Numerical modeling shows a wide acceptable range of sensitive section parameters for low-loss materials, while for higher-loss materials this range becomes much narrower. Narrow-linewidth DBR lasers are required for high sensitivity. In this respect, sol-gel waveguides with and without Bragg grating were incorporated in the DBR laser scheme. Single-mode operation of DBR lasers with sol-gel waveguide gratings was demonstrated for the first time, with 34-dB side mode suppression and a short-term linewidth of 150 to 500 kHz. A 3-section configuration with sol-gel waveguides and fiber grating showed 28-dB side mode suppression and a short-term linewidth of 600 kHz. Chemical sensing was performed with fiber grating, sol-gel waveguide grating, and 3-section DBR lasers. The first two types showed frequency shift of over 130 MHz in the presence of acetone vapors, and reversibility within experimental errors. The 3-section scheme showed significant dispersion of response and lack of reversibility due to parasitic reflections and instability of the setup. The effect of reflections from facets on performance of this design was examined and found to reduce the maximum sensitivity.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/285055
Date January 1999
CreatorsBeregovskii, Iouri
ContributorsFallahi, Mahmoud
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.3741 seconds