Return to search

Short erbium doped phosphate fiber amplifiers

Spectroscopic properties of high concentration Er³⁺-doped phosphate glasses and performance of short Er³⁺-doped phosphate fiber amplifiers were studied and characterized. Systematic studies of cooperative upconversion of Er³⁺ ions in ⁴I₁₃/₂ level and energy transfer from Yb³⁺ to Er³⁺ in phosphate glasses were performed by a rate equation formalism. The cooperative upconversion coefficient for an Er³⁺ concentration of 4 x 10²⁰ ions/cm³ was found to be 1.1 x 10⁻¹⁸ cm³/s. An energy transfer coefficient of 1.1 x 10⁻¹⁶ cm³/s was found for an Yb³⁺ concentration of 6 x 10²⁰ ions/cm3 and an Er³⁺ concentration of 2 x 10²⁰ ions/cm³. Energy transfer efficiencies from ²F₅/₂ level of Yb³⁺ ions to ⁴I₁₃/₂ level of Er³⁺ ions higher than 95% were determined from our measurements under weak excitation. The performance of high concentration Er³⁺-doped phosphate fiber amplifiers were characterized in terms of gain, noise figure, and signal saturation for a series of active fiber lengths, pump powers, signal input powers, and signal wavelengths. A net gain of 21 dB were achieved in a 71 mm Er³⁺-doped phosphate fiber with a noise figure of ∼5.3 dB by a 980 nm pump power of 244 mW. In addition, a 10 dB net gain can be obtained with a pump power of 110 mW. Performance of short Er³⁺-doped phosphate fiber amplifiers demonstrates the potential for device applications.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/289174
Date January 2000
CreatorsHwang, Bor-Chyuan
ContributorsPeyghambarian, Nasser
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0022 seconds