Return to search

Terahertz Electrodynamics of Dirac Fermions in Graphene

Charge carriers in graphene mimic two-dimensional massless Dirac fermions with linear energy dispersion, resulting in unique optical and electronic properties. They exhibit high mobility and strong interaction with electromagnetic radiation over a broad frequency range. Interband transitions in graphene give rise to pronounced optical absorption in the mid-infrared to visible spectral range, where the optical conductivity is close to a universal value $\sigma_0 = \pi e^2/2h$. Free-carrier intraband transitions, on the other hand, cause low-frequency absorption, which varies significantly with charge density and results in strong light extinction at high carrier density. These properties together suggest a rich variety of possible optoelectronic applications for graphene.

In this thesis, we investigate the optoelectronic properties of graphene by measuring transient photoconductivity with optical pump-terahertz probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations are accounted for by the interplay between photoinduced changes of both the Drude weight and carrier scattering rate. Our findings provide a complete picture to explain the opposite photoconductivity behavior reported in (undoped) graphene grown epitaxially and (doped) graphene grown by chemical vapor deposition. Our measurements also reveal the non-monotonic temperature dependence of the Drude weight in graphene, a unique property of two-dimensional massless Dirac fermions. / Physics

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/17467397
Date17 July 2015
CreatorsFrenzel, Alex J.
ContributorsHoffman, Jenny, Gedik, Nuh
PublisherHarvard University
Source SetsHarvard University
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation, text
Formatapplication/pdf
Rightsopen

Page generated in 0.0019 seconds