Return to search

Diffuse light correction for field reflectance measurements

The Remote Sensing Group of the Optical Sciences Center at the University of Arizona performs absolute radiometric calibration of Earth-viewing sensors using vicarious methods. The reflectance and irradiance-based methods require the nadir-view reflectance of a calibration site at sensor overpass. Errors in these reflectance data contribute directly to errors in the retrieved at sensor radiance, and therefore errors in the calibration. This research addresses two areas of improvement for the reflectance retrieval. The discreet laboratory data of the reference panel is spectrally interpolated using the measured hemispherical reflectance rather than a polynomial fit. This interpolation better fits an absorption feature of the reference material near 2200 nm. The desired reflectance is due to the directly-transmitted solar irradiance, but field measurements also include irradiance due to diffuse light. Non-lambertian properties of the reference and surface cause the ratio of the reflected total radiances to differ from the ratio of the reflected solar radiances. This difference can be corrected using additional field measurements, shaded surface/shaded-reference, output from a radiative transfer code, RTC-only, or a combination of both, shaded-reference. For the shaded-reference and RTC-only methods the shape of the bi-directional reflectance factor of the surface must be known to better than 10% to maintain a 2% accuracy for the retrievals, while the shaded-surface/shaded-reference method does not use the surface BRF. All three methods were applied to measurements of calibrated reflectance tarpaulins, and to measurements made at White Sands Missile Range. These data demonstrate that the shaded-surface/shaded-reference and RTC-only methods improve the surface reflectance retrieval, while the shaded-reference method is too sensitive to variations between the actual and modeled diffuse sky irradiance to be useful. This research represents significant improvements in the calculation of surface reflectance for vicarious calibration. The hemispherical reflectance interpolation will reduce uncertainties in the short wave infrared by 1%, and the diffuse corrections will reduce the errors in blue by 2% in some cases.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/279899
Date January 2001
CreatorsLaMarr, John Henry
ContributorsThome, Kurtis J.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0062 seconds