Return to search

Design and processing of organic electroluminescent devices

The present dissertation compiles three aspects of my Ph.D. work on OLED device design, fabrication and characterization. The first chapter is a review of the concepts and theories describing the mechanisms of organic electroluminescence. The second chapter makes use of these concepts to articulate some basic principles for the design of efficient and stable OLEDs. The third chapter describes the main characterization and sample preparation techniques used along this dissertation. Chapter IV describes the processing of efficient organic electroluminescent EL devices with ITO\TPD\AIQ₃\Mg:Ag structures. The screen printing technique of a hole transport polymeric blend was used in an unusual mode to render thin films in the order of 60-80 nm. EL devices were then fabricated on top of these sp films to provide ∼0.9% quantum efficiencies, comparable to spin coating with the same structures. Various polymer:TPD and solvent combinations were studied to find the paste with the best rheological properties. The same technique was also used to deposit a patterned MEH-PPV film. Chapter V describes my research work on the wetting of TPD on ITO substrates. The wetting was monitored by following its surface morphology evolution as a function of temperature. The effect of these surface changes was then correlated to the I-V-L characteristics of devices made with these TPD films. The surface roughness was measured with tapping AFM showed island formation at temperatures as low as 50-60°C. I Also investigated the effect of the purity of materials like AlQ3 on the device EL performance, as described in Chapter VI. In order to improve the purity of these environmentally degradable complexes a new in situ purification technique was developed with excellent enhancement of the EL cell properties. The in situ purification process was then used to purify/deposit organic dyes with improved film formation and EL characteristics.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/284162
Date January 2000
CreatorsPardo-Guzman, Dino Alejandro
ContributorsPeyghambarian, Nasser, Jabbour, Ghassan
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0016 seconds