Return to search

Automated system for Monte Carlo determination of cutout factors of arbitrarily shaped electron beams and experimental verification of Monte Carlo calculated dose distributions

Dose predictions by Monte-Carlo (MC) techniques could alleviate the measurement load required in linac commissioning and clinical radiotherapy practice, where small or irregular electron fields are routinely encountered. In particular, this study focused on the MC calculation of cutout factors for clinical electron beams. A MC model for a Varian linac CL2300C/D was built and validated for all electron energies and applicators. A MC user code for simulation of irregular cutouts was then developed and validated. Supported by a home-developed graphical user interface, it determines in situ cutout factors and depth dose curves for arbitrarily shaped electron fields and collects phase space data. Overall, the agreement between simulations and measurements was excellent for fields larger than 2 cm. / The MC model was also used to calculate dose distributions with the fast MC code XVMC in CT images of phantoms of clinical interest. These dose distributions were compared to dose calculations performed by the pencil-beam algorithm-based treatment planning system CadPlan and verified against measurements. Good agreement between calculations and measurements was achieved with both systems for phantoms containing 1-dimensional heterogeneities, provided a minimal quality of the CT images. In phantoms with 3-dimensional heterogeneities however, CadPlan appeared unable to predict the dose accurately, whereas MC provided with a more satisfactory dose distribution, despite some local discrepancies.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.81259
Date January 2004
CreatorsAlbaret, Claude
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Medical Radiation Physics.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002166425, proquestno: AAIMR06369, Theses scanned by UMI/ProQuest.

Page generated in 0.0016 seconds