Return to search

Spiral irradiation in stereotactic radiosurgery

The aim of stereotactic radiosurgery is to deliver a high and uniform radiation dose to the target volume and a minimized dose to the surrounding healthy tissue. Various linac-based radiosurgical techniques are used clinically: multiple non-coplanar converging arcs, dynamic arc rotation, and conical rotation. The techniques differ in their beam distribution over the patient's head. / A study of the beam distribution characteristics for the clinical linac-based radiosurgical techniques is presented. Two spiral linac-based radiosurgical techniques are developed: the uniform dose-rate spiral irradiation and the dose-rate-weighted spiral irradiation. Both exhibit the same spiraling beam entry trace over the patient's head; however, they differ in their beam distribution along the spiral. The dose-rate-weighted spiral irradiation provides a uniform beam distribution over the 2pi solid angle available in radiosurgery. / The currently existing techniques and the spiral techniques are then compared using the cumulative dose-volume histogram (CDVH) tools available with the McGill Treatment Planning System (MPS). The dose-rate-weighted spiral technique leads to lower dose inhomogeneities within the target volume and better dose conformity within the target. Moreover, it also encompasses smaller volumes of tissue at all isodose levels with larger differences at low isodose levels. A conclusion is reached that the dose-rate-weighted spiral irradiation technique offers interesting advantages over the currently used clinical linac-based techniques.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.29884
Date January 1999
CreatorsDubé, Frédéric, 1973-
ContributorsPodgorsak, Ervin B. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Medical Radiation Physics.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001681487, proquestno: MQ55049, Theses scanned by UMI/ProQuest.

Page generated in 0.0044 seconds