Return to search

Low temperature force microscopy on a deeply embedded two dimensional electron gas

Experimental physics in the low temperature limit has consistently produced major advances for condensed matter research. Likewise, scanning probe microscopy offers a unique view of the nanometer scale features that populate the quantum landscape. This work discusses the merger of the two disciplines via the development of the Ultra Low Temperature Scanning Probe Microscope, the ULT-SPM. We focus on the novel characterization of an exotic condensed matter system: a deeply buried two dimensional electron gas with a cleaved edge overgrowth geometry. By coupling the dynamics of the force sensing probe microscope to the electrostatics of the electron gas, we can remotely and non-invasively measure charge transport features which are normally only observable using physically contacted electrodes. Focusing on the quantum Hall regime, we can exploit the high sensitivity of the local force sensor to study spatially dependent phenomena associated with electronic potential distributions. The instrument shows promise for many exciting experiments in which low temperatures, high magnetic fields, and local measurements are critical.Designed for operation at 50 mK, in magnetic fields reaching 16 T, many components of the instrument are not commercially available and were therefore designed and constructed in- house. As such, the intricate details of its design, construction and operation are documented thoroughly. This includes: the microscope assembly, the modular components such as the scan head and coarse motors, the electronics developed for controlling the instrument, and the general integration into the low temperature infrastructure. A quartz tuning fork is used as the force sensor in this instrument, enabling a wide selection between different modes of operation, the most relevant being electrostatic force microscopy. Noise limits are investigated and matched sources of experimental noise are identified. Detailed schematics of the instrument are also included. / La physique expérimentale aux limites des basses températures contribue constamment à des percées majeures dans le domaine de la matière condensée. Pour sa part, la microscopie à balayage de sonde offre la possibilité unique d'observer les éléments nanométriques qui car- actérisent le paysage quantique. Ce projet allie les avantages de ces deux disciplines par le développement d'un microscope à balayage de sonde opérant à très basse température (Ultra Low Temperature Scanning Probe Microscope), le « ULT-SPM. » Nous étudions en particulier un système exotique de la matière condensée : un gaz d'électrons bidimensionnel profondément enfoui, comportant une croissance latérale sur le bord clivé. Le couplage des forces dynamiques de la sonde du microscope et électrostatiques du gaz à électrons, nous permet de mesurer à distance et de façon non invasive, les caractéristiques de transport des charges, qui ne sont normalement observables qu'à l'aide d'électrodes et donc, par un contact physique. Dans le régime de l'effet Hall quantique, nous pouvons exploiter la grande sensibilité du capteur de force local pour étudier des phénomènes spatiodépendants associés aux distribu- tions de potentiel électronique. L'instrument se révèle prometteur pour la poursuite de nom- breuses expériences passionnantes où les conditions de basse température, champ magnétique élevé et mesures locales sont essentielles. Comme il est conçu pour fonctionner à 50 mK et sous un champ magnétique pouvant at- teindre 16 T, plusieurs composantes du microscope ne sont pas disponibles commercialement et ont donc été entièrement conçues et fabriquées sur place. Les détails intrinsèques de la con- ception, de la construction et du fonctionnement sont ainsi documentés à fond. Ceci inclut : l'assemblage du microscope, les composantes modulaires comme la tête de balayage et les mo- teurs, l'électronique des contrôles de l'instrument et l'intégration à l'infrastructure opérant à basse température. Dans cet instrument, un diapason de quartz fait office de capteur, ce qui permet une grande flexibilité quant aux différents modes d'opération, le plus utile étant la mi- croscopie de force électrostatique. Les limites de bruit sont étudiées et comparées aux sources de bruit expérimentales. Les schémas détaillés de l'instrument sont également inclus.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.97016
Date January 2011
CreatorsHedberg, James
ContributorsGuillaume Gervais (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Physics)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0021 seconds