Return to search

Electronic structure and quantum transport in disordered graphene

Graphene, a single sheet of graphite, has many interestingelectronic and mechanical properties, making it a viable candidate fortomorrow's electronics. It remains the most widely studied material in condensed matter physics as of2011. Due to various disorder effects, manyuseful properties of pristine graphene predicted by theory may notshow up in real world systems, and the exact effects of disorder on graphenenanoelectronics have not been investigated to any satisfaction.The research goal of this thesis is to provide first principles calculations to study disorder scattering in graphene nanostructures.We shall briefly review the basic concepts of electronicstructure theory of condensed matter physics, followed by a moredetailed discussion on density functional theory (DFT) which is themost widely applied atomistic theory of materials physics. We thenpresent the LMTO implementation of DFT specialized in calculatingsolid crystals. LMTO is computationally very efficient and isable to handle more than a few thousand atoms, while remaining reasonablyaccurate. These qualities make LMTO very useful for analysingquantum transport. We shall then discuss applying DFT within the Keldysh non-equilibrium Green's function formalism(NEGF) to handle non-equilibrium situations such as current flow. Finally, within NEGF-DFT, we shall use the coherentpotential approximation (CPA) and the non-equilibriumvertex correction (NVC) theory to carry out configurational disorder averaging. This theoretical framework is thenapplied to study quantum transport in graphene with atomisticdisorder. We shall investigate effects of substitutional boron (B)and nitrogen (N) doping in a graphene device connected to intrinsicgraphene electrodes. We have calculated quantum transport oftwo-probe graphene devices versus disorder concentration x, device length L, electron electron energy E, and our results suggest that doping greatlyaffects quantum transport properties by inducing significantdiffusive scattering.In particular, it is the first time inliterature that conductance versus doping concentration x isobtained from atomic first principles. Importantly, the NVC theoryallows us to directly determine the diffusive scatteringcontribution to the total conductance. Since B and Natoms are located on either side of carbon in the periodic table, avery interesting finding is that disorder scattering due to theseimpurities are mirrored almost perfectly on either side of the graphene Fermilevel. Such a behavior can be understood from the point of view ofcharge doping. / Le graphène, une seule feuille de graphite, a de nombreuse propriétés électroniques et mécaniques intéressantes, et ce qui en fait une solution viable pour l'électronique de demain. Il reste le matériau le plus largement étudié en physique de la matière condensée en 2011. En raison des effets du désordre, de nombreux propriétés utiles du graphène prédite par la théorie n'apparaissent pas dans les systèmes du monde réel, et les effets exacts du désordre dans le graphène n'ont pas été étudiées à toute satisfaction. L'objectif de cette thèse est de fournir une étude premiers principes de l'effet du désordre introduit dans des nanostructures de graphène. Nous allons passer brièvement en revue les concepts de base de la théorie électronique de la matière condensée, suivie par une discussion plus détaillée sur la théorie de la fonctionnelle de la densité (DFT) qui est la théorie atomique la plus couramment appliquée pour la physique matériaux. Nous allons ensuite présenter la méthode LMTO, des de la DFT, qui est spécialisée dans le calcul des cristaux solides. LMTO est mathématiquement très efficace et est en mesure de traiter plus de quelques milliers d'atomes, tout en restant raisonnablement précise. Ces qualités font que la méthode LMTO est très utile pour l'analyse du transport quantique. Nous discuterons ensuite l'application du DFT est dans le formalisme de la fonction non-équilibre de Green de Keldysh (NEGF) pour traiter les systèmes non-équilibre, tels que le courant de charge. Enfin, dans NEGF-DFT, nous allons utiliser l'approximation du potentiel cohérent (CPA) et la correction non-équilibre de vertex (NVC) afin d'appliquer la théorie de la moyenne du désordre de configuration. Ce cadre théorique est ensuite appliquée à l'étude du transport quantique dans le graphène avec du désordre atomique. Nous allons étudier les effets de la substitution du bore (B) et de l'azote (N) dans le graphène connecté aux électrodes de graphène pure. Nous avons calculé le transport quantique des dispositifs de graphène en fonction de la concentration du désordre x, longueur du dispositif L, l'énergie E, et nos résultats suggèrent que le dopage affecte grandement les propriétés de transport quantique en induisant diffusion de maniere significante. En particulier, ceci est la première fois que la conductance en fonction de la concentration du dopage x est obtenue à partir de théorie premiers principes atomiques. Il est important de noter que la théorie de la NVC nous permet de déterminer directement la contribution de la diffusion à la conductance totale. étant donné que les atomes B et N les atomes sont situés de chaque côté du carbone dans le tableau périodique, il est intéressant de constater que la diffusion du désordre due à ces impuretés apparait presque parfaitement de chaque côté du niveau de Fermi dans le graphène. Un tel comportement peut être compris du point de vue de la charge des dopants.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.104783
Date January 2011
CreatorsWang, Zi
ContributorsHong Guo (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Physics)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0158 seconds