Return to search

Saw propagation and device modelling on arbitrarily oriented substrates

A detailed theoretical analysis is presented for calculating the surface acoustic wave (SAW) reflection coefficient of thin metallic layers. Based on this analysis, directions of propagation are classified as symmetric or asymmetric. An augmented scalar transmission line circuit model which contains a new lumped network element that accounts for asymmetry is introduced to describe SAW reflection and transmission through a strip. The resulting network model is used to analyze grating and transducer structures. Computed results based on this new network model are in excellent agreement with measured data, not only on devices oriented along symmetric directions, but also on devices which exhibit directivity due to asymmetric orientations. A simple procedure, based on physical arguments, is outlined for the identification of high directivity orientations. An algebraic construction is given which demonstrates that the coupling-of-modes (COM) modelling of gratings and transducers is derivable from the new network model. Approximate explicit analytical expressions, in terms of the network model, are given for the COM model parameters. The properties of pseudo-surface-waves are re-examined and a new high-velocity pseudo-surface acoustic wave (HVPSAW) is described. It is shown that this mode, not referenced in the SAW device literature, has a low attenuation along certain directions, and is thus very attractive for high-frequency low-loss SAW devices.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.28511
Date January 1994
CreatorsPereira da Cunha, Maurício
ContributorsAdler, Eric L. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Electrical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001425254, proquestno: NN00123, Theses scanned by UMI/ProQuest.

Page generated in 0.0119 seconds