Return to search

Time-dependent quantum transport in mesoscopic structures

In this thesis, we present a theory to calculate the time-dependent current flowing through an arbitrary noninteracting nanoscale phase-coherent device connected to arbitrary noninteracting external leads, in response to sharp step- and square-shaped voltage pulses. Our analysis is based on the Keldysh nonequilibrium Green's functions formalism, and provides an exact analytical solution to the transport equations in the far from equilibrium, nonlinear response regime. The essential feature of our solution is that it does not rely on the commonly used wideband approximation where the coupling between device scattering region and leads is taken to be independent of energy, and as such provides a way to perform transient transport calculations from first principles on realistic systems, taking into account the detailed electronic structure of the device scattering region and the leads. As an illustration of the general theory, we perform a toy model calculation for a quantum dot with Lorentzian linewidth and show how interesting finite-bandwidth effects arise in the time-dependent current dynamics. Finally, we describe possible generalizations of our theory to the cases of superconducting leads (an example of broken symmetry) and one-dimensional leads in the Luttinger liquid regime (an example of an interacting system).

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.99346
Date January 2006
CreatorsMaciejko, Joseph.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Physics.)
Rights© Joseph Maciejko, 2006
Relationalephsysno: 002574593, proquestno: AAIMR28504, Theses scanned by UMI/ProQuest.

Page generated in 0.0113 seconds