Return to search

Inelastic electron tunneling spectroscopy in molecular electronic devices from first-principles

In this thesis, we present the first-principle calculations of inelastic electron tunneling spectroscopy(IETS) in single molecular break junctions. In a two-probe electrode-molecule-electrode setup, density functional theory(DFT) is used for the construction of the Hamiltonian and the Keldysh non-equilibrium Green's function(NEGF) technique will be employed for determining the electron density in non-equilibrium system conditions. Total energy functional, atomic forces and Hessian matrix can be obtained in the DFT-NEGF formalism and self-consistent Born approximation(SCBA) is used to integrate the molecular vibrations (phonons) into the framework once the phonon spectra and eigenvectors are calculated from the dynamic matrix. Geometry optimization schemes will also be discussed as an indispensable part of the formalism as the equilibrium condition is crucial to correctly calculate the phonon properties of the system.To overcome the numerical difficulties, especially the large computational time demand of the electron-phonon coupling problem, we develop a numerical approximation for the electron self-energy due to phonons and the error is controlled within numerical precision. Besides, a direct IETS second order I-V derivative expression is derived to reduce the error of numerical differentiation under reasonable assumptions. These two approximations greatly reduce the computation requirement and make the calculation feasible within current numerical capability.As the application of the DFT-NEGF-SCBA formalism, we calculate the IETS of the gold-octanedithiol(ODT) molecular junction. The I-V curve, conductance and IETS from ab-inito calculations are compared directly to experiments. A microscopic understanding of the electron-phonon coupling mechanism in the molecular tunneling junctions is explained in this example. In addition, comparisons of the hydrogen-dissociative and hydrogen-non-dissociative ODT junctions as well as the different charge transfer behaviors are presented to show the effects of thiol formation in the ODT molecular junction. / Dans cette thèse, nous présentons des calculs ab initio de la spectroscopie à effet tunnel par électron inélastique (IETS)appliqués à des jonctions moléculaires. Dans le cadre d'une configuration électrode-molécule-électrode,la théorie de la fonctionnelle de la densité (DFT) est utilisée pour construire l'hamiltonien et les fonctions de Green hors-équilibres(NEGF) sont employées pour déterminer la densité électroniquedans des conditions hors-équilibre. Le cadrede la DFT-NEGF nous permet de calculer des quantités telles que la fonctionnelle d'énergie totale,les forces atomiques ainsi que la matrice de Hessian. L'approximationauto-consistante de Born (SCBA) est employée afin d'intégrer les vibrations moléculaires (phonons) dans le formalisme DFT-NEGF,une fois que le spectre des phonons et les vecteurs propres ont été calculés à partir de la matrice dynamique. Des méthodes d'optimisations géométriques sont aussi discutées en tant que part indispensable du formalisme,étant donné que la condition d'équilibre mécanique est essentielle afin de calculer correctement les propriétés des phonons du système.Afin de surmonter les difficultés numériques, particulièrement concernant la grande demandecomputationnelle requise pour le calcul du couplage électron-phonon, nous développons une approximation numérique pour la self-énergie associée aux phonons. De plus, en employant quelques hypothèses raisonables, nous dérivons une expression pour l'IETS calculée à partir de laseconde dérivée de la courbe I-V dans le butde réduire l'erreur associée à la différentiation numérique. L'utilisation de ces deux approximations diminuent grandement les exigences computationnelles et rendent les calculs possibles avec les capacités numériques actuelles.Comme application du formalisme DFT-NEGF-SCBA, nous calculons l'IETS de la jonction moléculaire or-octanedithiol(ODT)-or. La courbe I-V, la conductance et l'IETS obtenues par calculs ab initio sontdirectement comparées aux données expérimentales. Une compréhension microscopique du couplage électron-phonon pour une jonction moléculaire à effet tunnel est élaborée dans cet exemple. De plus, des comparaisons entre les jonctions ODT à hydrogène dissociatif et à hydrogène non-dissociatif ainsi queles différents comportements de transfert de charges sont présentés afin de montrer les effets de la formation du thiol dans la jonction moléculaire ODT.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.96883
Date January 2011
CreatorsJi, Tao
ContributorsHong Guo (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Physics)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0133 seconds