Return to search

Inter-theory relations in physics : case studies from quantum mechanics and quantum field theory

I defend three general claims concerning inter-theoretic reduction in physics. First, the popular notion that a superseded theory in physics is generally a simple limit of the theory that supersedes it paints an oversimplified picture of reductive relations in physics. Second, where reduction specifically between two dynamical systems models of a single system is concerned, reduction requires the existence of a particular sort of function from the state space of the low-level (purportedly more accurate and encompassing) model to that of the high-level (purportedly less accurate and encompassing) model that approximately commutes, in a specific sense, with the rules of dynamical evolution prescribed by the models. The third point addresses a tension between, on the one hand, the frequent need to take into account system-specific details in providing a full derivation of the high-level theory’s success in a particular context, and, on the other hand, a desire to understand the general mechanisms and results that under- write reduction between two theories across a wide and disparate range of different systems; I suggest a reconciliation based on the use of partial proofs of reduction, designed to reveal these general mechanisms of reduction at work across a range of systems, while leaving certain gaps to be filled in on the basis of system-specific details. After discussing these points of general methodology, I go on to demonstrate their application to a number of particular inter-theory reductions in physics involving quantum theory. I consider three reductions: first, connecting classical mechanics and non-relativistic quantum mechanics; second,connecting classical electrodynamics and quantum electrodynamics; and third, connecting non-relativistic quantum mechanics and quantum electrodynamics. I approach these reductions from a realist perspective, and for this reason consider two realist interpretations of quantum theory - the Everett and Bohm theories - as potential bases for these reductions. Nevertheless, many of the technical results concerning these reductions pertain also more generally to the bare, uninterpreted formalism of quantum theory. Throughout my analysis, I make the application of the general methodological claims of the thesis explicit, so as to provide concrete illustration of their validity.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:684926
Date January 2013
CreatorsRosaler, Joshua S.
ContributorsWallace, David ; Saunders, Simon
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:1fc6c67d-8c8e-4e92-a9ee-41eeae80e145

Page generated in 0.0024 seconds