Return to search

Design of Microwave Front-End Narrowband Filter and Limiter Components

<p> This dissertation proposes three novel bandpass filter structures to protect systems exposed to damaging levels of electromagnetic (EM) radiation from intentional and unintentional high-power microwave (HPM) sources. This is of interest because many commercial microwave communications and sensor systems are unprotected from high power levels. Novel technologies to harden front-end components must maintain existing system performance and cost. The proposed concepts all use low-cost printed circuit board (PCB) fabrication to create compact solutions that support high integration.</p><p> The first proposed filter achieves size reduction of 46% using a technology that is suitable for low-loss, narrowband filters that can handle high power levels. This is accomplished by reducing a substrate-integrated waveguide (SIW) loaded evanescent-mode bandpass filter to a half-mode SIW (HMSIW) structure. Demonstrated third-order SIW and HMSIW filters have 1.7 GHz center frequency and 0.2 GHz bandwidth. Simulation and measurements of the filters utilizing combline resonators prove the underlying principles.</p><p> The second proposed device combines a traditional microstrip bent hairpin filter with encapsulated gas plasma elements to create a filter-limiter: a novel narrowband filter with integral HPM limiter behavior. An equivalent circuit model is presented for the ac coupled plasma-shell components used in this dissertation, and parameter values were extracted from measured results and EM simulation. The theory of operation of the proposed filter-limiter was experimentally validated and key predictions were demonstrated including two modes of operation in the on state: a constant output power mode and constant attenuation mode at high power. A third-order filter-limiter with center frequency of 870 MHz was demonstrated. It operates passively from incident microwave energy, and can be primed with an external voltage source to reduce both limiter turn-on threshold power and output power variation during limiting. Limiter functionality has minimal impact on filter size, weight, performance, and cost.</p><p> The third proposed device demonstrates a large-area, light-weight plasma device that interacts with propagating X-band (8-12 GHz) microwave energy. The structure acts as a switchable EM aperture that can be integrated into a radome structure that shields enclosed antenna(s) from incident energy. Active elements are plasma-shells that are electrically excited by frequency selective surfaces (FSS) that are transparent to the frequency band of interest. The result is equivalent to large-area free-space plasma confined in a discrete layer. A novel structure was designed with the aid of full-wave simulation and was fabricated as a 76.2 mm square array. Transmission performance was tested across different drive voltages and incidence angles. Switchable attenuation of 7 dB was measured across the passband when driven with 1400 V<sub>pp</sub> at 1 MHz. Plasma electron density was estimated to be 3.6 &times; 10<sup> 12</sup> cm<sup>-3</sup> from theory and full-wave simulation. The proposed structure has potential for use on mobile platforms.</p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:3588122
Date06 September 2013
CreatorsCross, Lee W.
PublisherThe University of Toledo
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0019 seconds