Return to search

Electrical wavelength tuning in single and multi-wavelength, mode-locked semiconductor fiber ring lasers

The explosive growth in the information technology industry requires high-performance optical sources. In recent years, wavelength-tunable optical pulse sources are of interest for applications in optical instrumentation, communications, and sensing. This thesis demonstrates and analyzes the generation of wavelength tunable, picosecond pulses from mode-locked semiconductor fiber ring lasers. One structure using an intracavity electro-optic modulator and the other an injected optical control signal, are investigated and experimentally characterized. A single or superimposed linearly chirped fiber Bragg gratings are used to provide wavelength selectivity, tunability, and multi-wavelength operation. The semiconductor optical amplifier as the gain media makes it possible to obtain stable simultaneous oscillation of several wavelengths at any wavelength band with very small channel spacing. We have successfully generated picosecond pulses at one or two wavelengths over the reflection bandwidth(s) of the grating(s) by simply changing the modulation frequency.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.82474
Date January 2004
CreatorsCao, Hong, 1974-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Electrical and Computer Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002209804, proquestno: AAIMR12589, Theses scanned by UMI/ProQuest.

Page generated in 0.0012 seconds