Return to search

Structural and magnetotransport properties of nickelcobalt multilayers

Ferromagnetic/ferromagnetic Ni/Co multilayers with component layer thicknesses ranging from 40 A down to 5 A were prepared by DC-magnetron sputtering. Due to the fact that Ni and Co alloys share a common d band, it is expected that the total resistance of the multilayers, including the elemental resistance of the layers and the resistance of the interdiffused alloyed region at the interfaces, will be lower than for other 3d transition metal combinations. Consequently, the magnetoresistance ratio $ Delta rho/ rho$ is expected to be enhanced. / Structural characterization by grazing-angle X-ray reflectivity reveals high-quality layered structures with a well-defined composition modulation along the film growth direction. Wide-angle X-ray diffraction scans display the polycrystalline nature of the Ni/Co multilayers which grow in an FCC phase with a preferred (111) orientation and a fraction of (200) structural domains. / Measurements of the magnetotransport properties of these multilayers indicate that the magnetoresistance (MR) effect, $ Delta rho sim0.35 mu Omega cdot$cm, is roughly constant over the entire compositional range. The MR ratio $ Delta rho/ rho,$ which is as high as 3.0% in a Si/(Ni40A/Co5A) $ times$ 6 multilayer, is therefore more strongly dependent on the zero-field resistivity $ rho.$ By fitting a semi-classical model to the resistivity compositional variation, we determined the interface contribution to the resistivity. The MR measurements as well as the magnetic anisotropy of the films, studied by vibrating sample magnetometry (VSM) and magneto-optical Kerr effect (MOKE) magnetometry, are consistent with the origin of the observed MR effect being anisotropic magnetoresistance (AMR). The highest magnetic sensitivity measured at zero-field and constant in the range from ${ sim}{-}10$ Oe to +10 Oe was 0.1%/Oe. This value compares well with other alloys being developed as magnetic sensors. (Abstract shortened by UMI.)

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.24003
Date January 1996
CreatorsFreitag, James M. (James Mac)
ContributorsAltounian, Zaven (advisor), Strom-Olsen, John O. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Physics.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001538754, proquestno: MM19812, Theses scanned by UMI/ProQuest.

Page generated in 0.0021 seconds