Return to search

⁸⁷Rubidium Bose-Einstein condensates : machine construction and quantum Zeno experiments / Eighty-seven Rubidium Bose-Einstein condensates : machine construction and quantum Zeno experiments

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2006. / Includes bibliographical references (p. 121-130). / This thesis details construction of a new apparatus for the production of 87Rb Bose-Einstein condensates and a subsequent quantum Zeno effect experiment. An experimental apparatus for producing large Bose-Einstein condensates of 87Rb is described in detail. A high flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transfered into a cloverleaf style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio frequency induced forced evaporation. Condensates containing up to 20 million atoms can be produced every few minutes. The quantum Zeno effect is the suppression of transitions between quantum states by frequent measurement. Oscillation between two ground hyperfine states of a magnetically trapped 87Rb Bose-Einstein condensate, externally driven at a transition rate WR, was substantially suppressed by destructively measuring one of the levels with resonant optical scattering. While an ideal continuous measurement will stop the transition, any real measurement method will occur at a finite rate. The suppression of the transition rate in the two level system was quantified for pulsed measurements with a time between pulses t and weak continuous measurements with a scattering rate y. We observe that the weak continuous measurements exhibit the same suppression in the transition rate as the pulsed measurements when ySt = 3.60(0.43). This is in agreement with the previously predicted value of 4. Increasing the measurement frequency suppressed the transition rate to 0.005WR. / by Erik William Streed. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/34400
Date January 2006
CreatorsStreed, Erik William
ContributorsWolfgang Ketterle and David E. Pritchard., Massachusetts Institute of Technology. Dept. of Physics., Massachusetts Institute of Technology. Dept. of Physics.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format130 p., 9063179 bytes, 9062967 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0015 seconds