Return to search

Møller scattering at low energy

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2018. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 149-151). / Møller scattering is one of the most fundamental processes in QED. Its knowledge at high precision is necessary for a variety of modern nuclear and particle physics experiments. However, most treatments have neglected the electron mass, which is an approximation that breaks down at relevant low energies. In this thesis, existing soft-photon radiative corrections were combined with new hard-photon bremsstrahlung calculations to take into account the effect of photon emission at any photon energy. The electron mass was included at all steps. The radiative corrections were compiled into a Monte Carlo event generator. To test the results, an experiment was designed, constructed, installed, and executed at the MIT High Voltage Research Laboratory. Measurements are reported, comparing the simulated radiative Møller spectra to data at 2.5 MeV. Good agreement between the measurements and the new calculation is observed in the momentum spectrum at three angles. / by Charles S. Epstein. / Ph. D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/119903
Date January 2018
CreatorsEpstein, Charles Samuel
ContributorsRichard G. Milner., Massachusetts Institute of Technology. Department of Physics., Massachusetts Institute of Technology. Department of Physics.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format151 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0016 seconds