Monte Carlo (MC) dose calculations cannot accurately assess the dose delivered to the patient during radiotherapy unless the patient anatomy is well known. This thesis focuses on the conversion of patient computed tomography (CT) images into MC geometry files. Metal streaking artifacts and their effect on MC dose calculations are first studied. A correction algorithm is applied to artifact-corrupted images and dose errors due to density and tissue mis-assignment are quantified in a phantom and a patient study. The correction algorithm and MC dose calculations for various treatment beams are also investigated using phantoms with real hip prostheses. As a result of this study, we suggest that a metal artifact correction algorithm should be a part of any MC treatment planning. By means of MC simulations, scatter is proven to be a major cause of metal artifacts. The use of dual-energy CT (DECT) for a novel tissue segmentation scheme is thoroughly investigated. First, MC simulations are used to determine the optimal beam filtration for an accurate DECT material extraction. DECT is then tested on a CT scanner with a phantom and a good agreement in the extraction of two material properties, the relative electron density rho_e and the effective atomic number Z is found. Compared to the conventional tissue segmentation based on rho_e-differences, the novel tissue segmentation scheme uses differences in both rho_e and Z. The phantom study demonstrates that the novel method based on rho_e and Z information works well and makes MC dose calculations more accurate. This thesis demonstrates that DECT suppresses streaking artifacts from brachytherapy seeds. Brachytherapy MC dose / Les calculs de dose Monte Carlo (MC) ne peuvent précisément déterminer la dose délivrée au patient, à moins de bien connaître son anatomie. Cette thèse se concentre sur la conversion des images tomographiques du patient en fichier de géométrie Monte Carlo. Les artefacts métalliques et leur effet sur les calculs de dose MC sont étudiés. Un algorithme de correction est appliqué sur les images avec artefacts et les erreurs de dose dues au mauvais assignement des densités et tissus sont quantifiées dans un fantôme et une étude de patient. L'algorithme de correction est aussi testé sur des fantômes avec de réelles prothèses de hanches et l'effet de correction sur les calculs de dose MC est étudié. En tant que résultat de cette étude, nous suggérons qu'un algorithme de correction des artefacts métalliques soit intégré à tout plan de traitement MC. Par le biais de simulations MC, le diffusé est prouvé être une cause majeure des artefacts métalliques. L'utilisation d'un scanner double énergie pour une méthode novatrice de segmentation de tissu est minutieusement étudiée. Tout d'abord, les simulations MC sont utilisées pour déterminer la filtration optimale de faisceau pour une extraction précise du matériau en scanner double énergie. La méthode à double énergie est ensuite testée sur un scanner avec un fantôme et un bon accord dans l'extraction des propriétés des deux matériaux, la densité électronique relative rho_e et le nombre effectif atomique Z est trouvé. Comparé à la segmentation conventionnelle des tissus réalisée sur la base des différents rho_e, la méthode novatrice de segmentation de tissu utilise les diff
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.32513 |
Date | January 2009 |
Creators | Bazalova, Magdalena |
Contributors | Frans Verhaegen (Internal/Supervisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Physics) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | Electronically-submitted theses. |
Page generated in 0.0024 seconds