Return to search

Simulations de dynamique moléculaire des processus de plasma induits par l'hydrogène atomique et la croissance épitaxiale de couches minces de silicium catalysée par l'impact d'agrégats

Trois processus qui ont lieu dans un réacteur à plasma ont été étudiés au moyen de simulations de dynamique moléculaire: le chauffage et la fusion des agrégats de silicium hydrogéné par des réactions avec l'hydrogène atomique, la guérison induite par l'hydrogène des surfaces de silicium auparavant endommagées par l'impact violent d'agrégats, et la croissance épitaxiale des couches minces catalysée par des agrégats de silicium hydrogéné. Deux agrégats de silicium hydrogéné qui représentent des structures amorphes et cristallines sont choisis pour être exposés à l'hydrogène atomique comme dans un réacteur à plasma réaliste. Nous avons étudié quantitativement comment les agrégats chauffent et fondent par des réactions avec des atomes d'hydrogène. Une surface de silicium qui a été partiellement endommagée par l'impact violent d'un agrégat a été traitée par des atomes d'hydrogène. Nous avons observé que la surface du silicium mal définie est réarrangée à sa structure cristalline initiale après l'exposition à l'hydrogène atomique ; à savoir, en raison de la dynamique de réaction de surface avec des atomes d'hydrogène, les atomes de silicium de l'agrégat de silicium hydrogéné sont positionnés dans une structure épitaxiale de la surface. Ensuite, nous avons effectué une étude approfondie sur la dynamique du dépôt des agrégats de silicium hydrogéné sur un substrat de silicium cristallin en contrôlant les paramètres régissant le dépôt d'agrégat sur la surface. Nous avons trouvé que la croissance épitaxiale de couches minces de silicium peut être obtenue à partir de dépôts d'agrégats si les énergies d'impact sont suffisamment élevées pour que les atomes de l'agrégat et des atomes de la surface touchant l'agrégat subissent une transition de phase à l'état liquide avant d'être recristallisés dans un ordre épitaxial. Ce processus est d'une importance cruciale pour améliorer la croissance épitaxiale à grande vitesse des couches minces de silicium à basse température en utilisant la technique PECVD (" Plasma Enhanced Chemical Vapor Deposition ") pour des applications industrielles.

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00985657
Date29 January 2014
CreatorsLe, Ha-Linh Thi
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0034 seconds