Return to search

RNA interference v myších oocytech a tělních buňkách / RNA interference in mouse oocytes and somatic cells

RNA interference (RNAi) is a pathway, which employs Dicer to process long double stranded RNAs (dsRNA) from endogenous or exogenous sources into short interfering RNAs (siRNA). siRNAs are loaded onto Argonaute proteins to mediate sequence-specific post-transcriptional RNA targeting resulting in regulation of protein-coding genes and retrotransposons or antiviral immune response. Another small RNA pathway - PIWI-associated RNA (piRNA) pathway is suppressing retrotransposons in the germline. In mice, canonical RNAi pathway activity is negligible in somatic cells where a full-length Dicer produces gene-regulatory microRNAs (miRNA) but RNAi is highly active in oocytes, which express a truncated oocyte-specific Dicer isoform (DicerO ). DicerO lacks an N-terminal DExD helicase domain and has higher cleavage activity of long dsRNAs. Deletion of oocyte specific DicerO promoter leads to transcriptome aberrations, which include upregulation of putative RNAi targets and MT retrotransposons and, consequently, to meiotic spindle defects and female sterility. In contrast, the piRNA pathway is non-essential in mouse oocytes, potentially because of overlapping functions of RNAi. The PhD thesis aims to understand biological significance of mammalian endogenous RNAi and to explore consequences of re-activated RNAi...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:437787
Date January 2021
CreatorsTáborská, Eliška
ContributorsSvoboda, Petr, O´Connell, Mary Anne, Petr, Jaroslav
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0021 seconds