Return to search

Tribological evaluation of the contact between upper compression ring and cylinder liner with different surface coatings / Tribologisk utvärdering av olika ytbeläggningar för kontakten mellan övre kolvring och cylinderfoder

The constant pursuit in the automotive industry to increase the engines performance, new solutions are always developed and tested to reduce the friction and increase the efficiency in the engine. One component that contributes to friction losses is the piston ring pack where the top compression stands for up to 40 %. This master thesis collaborated with Scania’s material science department Basic engine and covers the friction and wear of four different materials on the cylinder liner surface against the top compression ring.The four tested materials were grey cast iron with different honing quality and three atmospheric plasma sprayed coatings with titanium oxide, chromium oxide and Metco’s mixture F2071 which is a stainless steel mixed with a ceramic. A martensitic steel piston ring with a chromium coated sliding surface was used for all the testing in the Cameron-Plint TE77 test-rig. This is a pin-on-disc test method and the parameters used for testing is set to replicate the environment the ring is exposed to at the top dead centre.The test-rig has been in Scania’s possession for a long time and has not always given a satisfying result. An uneven contact between the ring and liner has been a problem resulting in only worn edges of the liner specimen. The piston ring holder was therefore redesigned to be able to adjust the radius of the ring. This allowed a good conformability between the ring and liner to be obtained.The tested materials were evaluated according to friction and wear. Friction was measured with the test-rig and the wear was calculated with surface profiles that were measured before and after testing. Worn surfaces were studied in a SEM to verify which wear mechanism that was active. The changes of the surfaces was studied with the use of following surface parameters Ra, Rk, Rpk, Rvk and if there was a connection between these parameters and friction and wear coefficient.Independent of honing quality showed the grey cast iron lowest friction coefficient just under 0.13, the F2071 liner showed a friction coefficient just above 0.13. Both oxide layers showed similar friction where the chromium oxide had a friction just below 0.15 and the titanium oxide lay just above 0.15. Lowest wear coefficient had the chromium oxide followed by F2071, titanium oxide and the bad honed grey cast iron. These three liners showed almost the exact same wear coefficient. Worst wear coefficient had the grey cast iron with a good honing quality. A mild abrasive wear mechanism was active during the wear test and vague wear marks was found on the surface. There is no connection between wear coefficient and friction and the change in surface roughness during the test does not affect the friction.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-45454
Date January 2016
CreatorsWassborg, Pär
PublisherKarlstads universitet, Institutionen för ingenjörsvetenskap och fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds