Designing hardware to output pixels for light field displays or multi-projector systems is challenging owing to the memory bandwidth and speed of the application. A new technique of hardware that implements ‗anywhere pixel routing‘ was designed earlier at the University of Kentucky. This technique uses hardware to route pixels from input to output based upon a Look up Table (LUT). The initial design suffered from high memory latency due to random accesses to the DDR SDRAM input buffer. This thesis presents a cache design that alleviates the memory latency issue by reducing the number of random SDRAM accesses.
The cache is implemented in the block RAM of a field programmable gate array (FPGA). A number of simulations are conducted to find an efficient cache. It is found that the cache takes only a few kilobits, about 7% of the block RAM and on an average speeds up the memory accesses by 20-30%.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:ece_etds-1007 |
Date | 01 January 2007 |
Creators | Raghunathan, Vijai |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Electrical and Computer Engineering |
Page generated in 0.0879 seconds