Return to search

A machine learning approach for plagiarism detection

Plagiarism detection is gaining increasing importance due to requirements for integrity in education. The existing research has investigated the problem of plagrarim detection with a varying degree of success. The literature revealed that there are two main methods for detecting plagiarism, namely extrinsic and intrinsic. This thesis has developed two novel approaches to address both of these methods. Firstly a novel extrinsic method for detecting plagiarism is proposed. The method is based on four well-known techniques namely Bag of Words (BOW), Latent Semantic Analysis (LSA), Stylometry and Support Vector Machines (SVM). The LSA application was fine-tuned to take in the stylometric features (most common words) in order to characterise the document authorship as described in chapter 4. The results revealed that LSA based stylometry has outperformed the traditional LSA application. Support vector machine based algorithms were used to perform the classification procedure in order to predict which author has written a particular book being tested. The proposed method has successfully addressed the limitations of semantic characteristics and identified the document source by assigning the book being tested to the right author in most cases. Secondly, the intrinsic detection method has relied on the use of the statistical properties of the most common words. LSA was applied in this method to a group of most common words (MCWs) to extract their usage patterns based on the transitivity property of LSA. The feature sets of the intrinsic model were based on the frequency of the most common words, their relative frequencies in series, and the deviation of these frequencies across all books for a particular author. The Intrinsic method aims to generate a model of author “style” by revealing a set of certain features of authorship. The model’s generation procedure focuses on just one author as an attempt to summarise aspects of an author’s style in a definitive and clear-cut manner. The thesis has also proposed a novel experimental methodology for testing the performance of both extrinsic and intrinsic methods for plagiarism detection. This methodology relies upon the CEN (Corpus of English Novels) training dataset, but divides that dataset up into training and test datasets in a novel manner. Both approaches have been evaluated using the well-known leave-one-out-cross-validation method. Results indicated that by integrating deep analysis (LSA) and Stylometric analysis, hidden changes can be identified whether or not a reference collection exists.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:723658
Date January 2016
CreatorsAlsallal, M.
PublisherCoventry University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://curve.coventry.ac.uk/open/items/7e903a56-4845-4852-b1a8-2849b1cdb08a/1

Page generated in 0.0059 seconds