Return to search

Tropical cyclone size in observations and in radiative-convective equilibrium

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 147-154). / Tropical cyclone size remains an unsolved problem in tropical meteorology, yet size plays a significant role in the damage caused by tropical cyclones due to wind, storm surge, and inland freshwater flooding. This work explores size, defined as the radius of vanishing wind, in observations and at equilibrium in an idealized numerical model. First, a climatology of size is created from the QuikSCAT database of near-surface wind vectors for the years 1999-2008. Globally, the distribution of the outer radius is found to be log-normal, with statistically significant variation across ocean basins, but with minimal correlation with various dynamic and thermodynamic parameters. Second, the sensitivity of the structure of a numerically-simulated axisymmetric tropical cyclone at statistical equilibrium to the set of relevant model, initial, and environmental external parameters is explored. The analysis is performed in a highly-idealized state of radiative-convective equilibrium (RCE). The non-dimensional equilibrium radial wind profile is found to be modulated primarily by a single nondimensional parameter given by the ratio of the storm radial length scale to the parameterized eddy radial length scale. The relevant storm length scale is shown to be the ratio of the potential intensity to the Coriolis parameter, matching the prediction for the "natural" storm length scale in prevailing axisymmetric tropical cyclone theory. The outer storm circulation is further modulated by a second non-dimensional parameter that represents the non-dimensional Ekman suction rate. Third, size is explored in three-dimensional "tropical cyclone world" simulations, with preliminary results confirming the relevant length scale obtained in axisymmetry. Ultimately, the results of the equilibrium storm analysis are insufficient to explain the observed distribution of tropical cyclone size, but they provide the first steps toward a more fundamental understanding of the dynamics of size. / by Daniel Robert Chavas. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/82308
Date January 2013
CreatorsChavas, Daniel Robert
ContributorsKerry A. Emanuel,, Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format154 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0019 seconds