Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2018. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 19-23). / Bubble bursting at the ocean surface generates smaller film-burst particles and larger jet drop particles that differ in composition. The chemical composition of sea spray aerosols is an important parameter for the evaluation of their impact on the global climate system. This study investigates the role of particle chemistry on the heterogeneous ice nucleation potential of laboratory-generated sea spray aerosols. Cultures of Procholorococcus, a highly abundant marine phytoplankton species, were used as a model source of organic sea spray aerosols. Results show that smaller particles generated from the lysed Procholorococcus cultures were organically enriched and effectively activated as ice nucleating particles at warmer temperatures and lower supersaturations than larger particles. The role of chemical composition in the activation of the particles was studied by measuring the nucleation abilities of single component organic molecules that mimic proteins, lipids, and carbohydrates in Procholorococcus. Amylopectin, agarose, and aspartic acid exhibited nucleation behaviors similar to particles generated from Procholorococcus cultures. Therefore, carbohydrates and proteins with numerous and well-ordered hydrophilic functional groups may determine the ice nucleation potential of organic sea spray aerosols. / by Lilian A. Dove. / S.B.
Identifer | oai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/117910 |
Date | January 2018 |
Creators | Dove, Lilian A |
Contributors | Daniel J. Cziczo., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences. |
Publisher | Massachusetts Institute of Technology |
Source Sets | M.I.T. Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | 25 pages, application/pdf |
Rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582 |
Page generated in 0.0035 seconds