Return to search

Elemental and reactive gaseous mercury deposition and diurnal cycles over terrestrial environments

Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 88-93). / The atmospheric component of the global biogeochemical mercury cycle was studied to determine the mechanisms behind diurnal trends and amplitudes in elemental and reactive gaseous mercury concentrations over terrestrial environments. This analysis was done using the 3D GEOS-Chem chemical transport model and the creation of a simple one-box model. Mercury is a significant neurotoxin for humans and other species that has been addressed in the policy realm on both national and international levels. Being able to model atmospheric mercury processes correctly is an important part of regulation and policy drafting. GEOS-Chem model results were compared with Weiss-Penzias et al. [2009] measurements for three Nevada, USA sites. The magnitude of elemental mercury concentrations differed by 0.07-0.2 ng/m3 , with GEOS-Chem underestimating concentrations due to an under-representation of mercury emissions at naturally enriched sites. The amplitude of reactive gaseous mercury diurnal variations differed by a factor of 3-4, with GEOS-Chem underestimating the diurnal trend. Based on the diurnal nature of this error, it is hypothesized that GEOS-Chem under represents the magnitude of elemental mercury emissions, the amount of oxidation occurring in the atmosphere, and the scale of entrainment from the free troposphere. / by Anastasia F. Maheras. / S.B.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/114365
Date January 2011
CreatorsMaheras, Anastasia Francis
ContributorsNoelle E. Selin., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format93 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0011 seconds