肝癌是造成癌症相關死亡的主要原因之一。而常規化療受耐藥性的發展和各種副作用的限制。由於無毒性和鲜明的生物药物能力,從蘑菇提取的代謝物在癌症治療中獲得更多的注意和关注。我們以前的研究已經證明來自平菇香菇多醣蛋白複合物的抗癌作用。本研究的目的是探討一種含有多醣蛋白複合物的秀珍菇(PP)熱水提取物在肝癌細胞中抗癌活性的分子機制。 / 我們的研究結果表明,用PP处理过的肝癌細胞,不僅顯著的显示出降低的體外腫瘤細胞的增殖和侵襲,也增強化療藥物順鉑的藥物敏感性。無論是口服和腹腔注射都顯著抑制移植免疫BALB / c裸小鼠的腫瘤生長。同时,PP也能在體外和體內实验顯著抑制PI3K/Akt信號通路在肝癌細胞。有趣的是,当过表达AKT时,Myr-AKT,PP的這種抑制癌细胞生长的效果有减弱的趋势,同时也反映在PP对癌细胞侵襲抑制的作用上。印跡和酶聯免疫吸附試驗結果表明,在PP处理过的肝癌細胞中,血管內皮生長因子(VEGF)的表達和分泌減少了。此外, rhVEGF的加入减弱了 PP对PI3K/Akt通路和肝癌细胞表型的抑製作用。 / 我們的研究結果表明,PP能在體外和體內试验中抑制肝癌細胞增殖,侵襲和耐藥性,通过抑制分泌血管內皮生長因子誘導PI3K/Akt的信號通路。這項研究表明了PP的潛在治療肝癌的治療意義。 / Liver cancer or hepatocellular carcinoma is one of the leading causes of cancer-related deaths. Conventional chemotherapies are limited by the development of drug resistance and various side effects. Because of its non-toxicity and potent biopharmacological activity, metabolites derived from mushrooms have received more attention in cancer therapy. Our previous studies have demonstrated the anti-cancer effects of polysaccharide-protein complexes derived from the Pleurotus mushrooms. The aim of this study was to investigate the underlying molecular mechanism of the anti-cancer activity of a hot water extract containing a polysaccharide-protein complex isolated from Pleurotus pulmonarius (PP) in liver cancer cells. / Our results indicated that exposure of liver cancer cells to PP not only significantly reduced the in vitro cancer cell proliferation and invasion but also enhanced the drug-sensitivity to the chemotherapeutic drug Cisplatin. Both oral administration and intraperitoneal injection of PP significantly inhibited the tumor growth in xenograft BALB/c nude mice. PP triggered a marked suppression of the PI3K/AKT signaling pathway in liver cancer cells in vitro and in vivo, and overexpression of the constitutively active form of AKT, Myr-AKT, abrogated this effect and the inhibited proliferation and invasion by PP. Both western blot and ELISA results showed that PP-treated liver cancer cells had reduced expression and secretion of vascular endothelial growth factor (VEGF). Addition of recombinant human VEGF attenuated the inhibitory effects of PP on PI3K/AKT pathway and the cancer phenotypes. / Our results demonstrated that PP suppressed the proliferation, invasion, and drug-resistance of liver cancer cells in vitro and in vivo, mediated by the inhibition of autocrine VEGF-induced PI3K/AKT signaling pathway. All these results suggest the potential therapeutic implication of PP in the treatment of human liver cancer. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Xu, Wenwen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 83-99). / Abstracts also in Chinese. / Thesis Committee --- p.i / English Abstract --- p.ii / Chinese Abstract --- p.iv / Acknowledgements --- p.v / List of Tables --- p.vi / List of Figures --- p.vii / Abbreviations --- p.x / Content page --- p.xiv / Chapter Chapter 1 --- Literature Review --- p.1 / Chapter 1.1 --- Mushroom as functional foods --- p.1 / Chapter 1.1.1 --- Introduction of functional food --- p.1 / Chapter 1.1.2 --- Functional food and cancer --- p.1 / Chapter 1.1.3 --- Edible Mushroom as functional food --- p.4 / Chapter 1.1.4 --- Pleurotus pulmonarius and its function --- p.7 / Chapter 1.2 --- Hepatocellular carcinoma --- p.9 / Chapter 1.2.1 --- Liver and hepatocellular carcinoma --- p.9 / Chapter 1.2.2 --- Carcinogenesis of liver cancer --- p.12 / Chapter 1.2.2.1 --- Hallmarks of cancer --- p.12 / Chapter 1.2.2.2 --- Cell cycle --- p.13 / Chapter 1.2.2.3 --- Apoptosis --- p.15 / Chapter 1.2.2.4 --- Angiogenesis --- p.17 / Chapter 1.2.2.5 --- Invasion and metastasis --- p.19 / Chapter 1.2.2.6 --- Drug resistance --- p.21 / Chapter 1.2.3 --- The role of PI3K/AKT pathway --- p.23 / Chapter 1.2.4 --- The role of growth factor Vascular endothelial growth factor (VEGF) in HCC --- p.25 / Chapter 1.3 --- Research objectives --- p.27 / Chapter 1.3.1 --- Hypothesis and objectives --- p.27 / Chapter 1.3.2 --- Experimental design --- p.28 / Chapter Chaper 2 --- Materials and Methods --- p.29 / Chapter 2.1 --- Materials --- p.29 / Chapter 2.1.1 --- Mushroom Pleurotus pulmonarius --- p.29 / Chapter 2.1.2 --- Drugs and cell lines --- p.29 / Chapter 2.1.3 --- Antibodies list --- p.30 / Chapter 2.1.4 --- Animal models --- p.32 / Chapter 2.2 --- Sample preparation and structure investigation --- p.32 / Chapter 2.2.1 --- Polysaccharide extraction from mushroom --- p.32 / Chapter 2.2.2 --- Endotoxin test --- p.32 / Chapter 2.2.3 --- Determination of monosaccharide profile by gas chromatography and mass spectrometry (GC/MS) --- p.33 / Chapter 2.2.3.1 --- Sample preparation for gas chromatography analysis --- p.33 / Chapter 2.2.3.1.1 --- Acid depolymerisation --- p.33 / Chapter 2.2.3.1.2 --- Neutral sugar derivatization --- p.33 / Chapter 2.2.3.1.3 --- External monosaccharide standard preparation --- p.34 / Chapter 2.2.3.2 --- Gas chromatography-mass spectrometry (GC/MS) --- p.34 / Chapter 2.2.4 --- Determination of total sugar by phenol-sulfuric acid method (Dubois, 1956) --- p.36 / Chapter 2.2.5 --- Determination of protein content by Lowry-Folin method (Lowry et al.,1951) --- p.37 / Chapter 2.3 --- Biological assays --- p.38 / Chapter 2.3.1 --- In vitro assays --- p.38 / Chapter 2.3.1.1 --- MTT assay --- p.38 / Chapter 2.3.1.2 --- Colony formation assay --- p.38 / Chapter 2.3.1.3 --- Plasmid transfection --- p.39 / Chapter 2.3.1.4 --- In vitro cell invasion assay --- p.39 / Chapter 2.3.1.5 --- Cell cycle analysis --- p.39 / Chapter 2.3.1.6 --- Western blot analysis --- p.40 / Chapter 2.3.1.7 --- VEGF ELISA Kit --- p.42 / Chapter 2.3.2 --- In vivo assays --- p.43 / Chapter 2.3.2.1 --- Tumor xenograft nude mouse model --- p.43 / Chapter 2.3.2.2 --- Immunohistochemistry --- p.45 / Chapter 2.3.2.3 --- H&Estaining --- p.45 / Chapter 2.3.3 --- Statistical analysis --- p.45 / Chapter Chaper 3 --- Results and discussion --- p.46 / Chapter 3.1 --- The yield and chemical characteristic of PP --- p.46 / Chapter 3.1.1 --- The yield of PP from mushroom Pleurotus pulmonarius --- p.46 / Chapter 3.1.2 --- Total carbohydrate and protein content --- p.47 / Chapter 3.1.3 --- Monosaccharide composition by GC-MS --- p.48 / Chapter 3.2 --- Toxicity of the PP water by Limulus amebocyte lysate (LAL) test --- p.48 / Chapter 3.2.1 --- Limulus amebocyte lysate (LAL) test --- p.48 / Chapter 3.3 --- Effects of PP on the proliferation of liver cancer cell lines --- p.50 / Chapter 3.3.1 --- MTT assay --- p.50 / Chapter 3.3.2 --- Colony-formation assay --- p.51 / Chapter 3.3.3 --- Cytotoxic effects of PP against normal liver cell --- p.52 / Chapter 3.3.4 --- The anti-proliferative effect of PP on other cancer types --- p.53 / Chapter 3.3.5 --- Cell cycle analysis by flow cytometry of PP treated liver cancer cells --- p.54 / Chapter 3.3.6 --- Protein expression by western blot analysis of P treated liver cancer cells --- p.56 / Chapter 3.4 --- Anti-cancer effect of PP on liver cancer cells through inactivation of PI3K/AKT signaling pathway --- p.57 / Chapter 3.4.1 --- Effect of PP on inactivation of PI3K/AKT pathway --- p.57 / Chapter 3.4.2 --- The abrogated inhibitory effect of PP on Huh7 with overexpression of AKT. --- p.59 / Chapter 3.4.3 --- The abrogated inhibitory effect of PP on PI3K/AKT signal pathway with overexpression of the constitutively active form of AKT, Myr-AKT --- p.60 / Chapter 3.5 --- Inhibition of VEGF expression and secretion by PP --- p.62 / Chapter 3.5.1 --- ELISA result of PP on VEGF secretion --- p.62 / Chapter 3.5.2 --- The attenuated inhibitory effect of PP on cell proliferation with addition of rhVEGF --- p.63 / Chapter 3.5.3 --- The attenuated inhibitory effect of PP on PI3K/AKT signal pathway with addition of rhVEGF --- p.64 / Chapter 3.6 --- Effect of PP on enhancing the chemosensitivity of liver cancer cells to Cisplatin --- p.66 / Chapter 3.6.1 --- Synergistic effect of PP with cisplatin (DDP) in liver cancer cells --- p.66 / Chapter 3.6.2 --- The abrogated drug-resistant effect by PP by overexpression of the constitutively active form of AKT, Myr-AKT --- p.67 / Chapter 3.6.3 --- The abrogated drug-resistant effect of PP with addition of rhVEGF --- p.68 / Chapter 3.7 --- The anti-invasive potential of PP on liver cancer cells. --- p.69 / Chapter 3.7.1 --- Boyden chamber assay --- p.69 / Chapter 3.7.2 --- The attenuated anti-invasive effect of PP on liver cancer cells with overexpression of constitutively activated AKT --- p.71 / Chapter 3.7.3 --- The attenuated anti-invasive effect of PP on liver cancer cells with addition of rhVEGF --- p.72 / Chapter 3.8 --- The anti-tumor effect of PP in vivo --- p.73 / Chapter 3.8.1 --- The anti-tumor effect of PP by using tumor xenograft model --- p.73 / Chapter 3.8.2 --- Body weight of nude mice treated with PP --- p.75 / Chapter 3.8.3 --- Harmful effect of PP on nude mice --- p.76 / Chapter 3.8.4 --- Immunohistochemist analysis of mice tumor xenograft treated with PP --- p.77 / Chapter 3.8.5 --- Western blot anaylysis using the tumor tissues harvested from mice xenograftes treated with PP --- p.78 / Chapter Chapter 4 --- Conclusion and future Plan --- p.81 / Reference --- p.83 / Related Publication List --- p.100
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328647 |
Date | January 2012 |
Contributors | Xu, Wenwen., Chinese University of Hong Kong Graduate School. Division of Life Sciences. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | electronic resource, electronic resource, remote, 1 online resource (xvii, 100 leaves) : ill. (some col.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0028 seconds