Return to search

Sweetpotato Storage Root Rots: Flooding-Associated Bacterial Soft Rot Caused by Clostridium spp. and Infection by Fungal End Rot Pathogens Prior to Harvest

Sweetpotato production in the southern United States is being threatened by a soft rot that develops in storage roots when fields are flooded and by an important post-harvest disease caused mainly by the fungi Fusarium solani and Macrophomina phaseolina.
To identify the pathogens responsible for development of the soft rot, samples were collected from storage roots with soft rot from intentionally flooded fields and decayed tissue was streaked on plates of nutrient dextrose agar plus 0.05% cysteine and incubated anaerobically. Two distinct groups of Gram positive strict anaerobic bacteria were re-isolated from rotting storage roots. Endospores were observed in all isolates by differential staining. Genomic DNA was extracted from representative isolates of each group, LSU-B1 and LSU-B7, and the 16s ribosomal RNA region was amplified and sequenced. BLASTn analysis of the 1425 bp sequence of LSU-B1 resulted in 99% homology with Clostridium puniceum strain BL 70/20 from rotting Irish potatoes. Isolate LSU-B7 generated a sequence 1376 bp long, which resulted in 99% homology with C. saccharobutylicum strain P262.
To determine how and when end rot pathogens enter sweetpotato storage roots, two greenhouse experiments were designed using tissue culture-derived plants free of F. solani and M. phaseolina. In one experiment, plants were grown in autoclaved soil and one month after transplanting, plants were inoculated at the soil line with either non-infested toothpicks or with toothpicks infested with each fungus alone or combined. In the other experiment, plants were grown in non-infested soil or in soil infested with each fungus alone or combined. Isolations were attempted from different parts of the plants. F. solani and M. phaseolina were recovered from roots, storage roots, and plant stems below the soil line, at the soil line, and five centimeters above the soil line in both experiments. This suggests that these fungi are capable of invading the sweetpotato plants and storage roots from infested soil, and systemically colonize the plant from infected plant propagation material, eventually reaching the storage roots. These findings indicate that infection with F. solani and M. phaseolina can occur prior to harvest adding crucial information to end rot disease control.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-04042013-111405
Date09 April 2013
Creatorsda Silva, Washington Luis
ContributorsClark, Christopher, Datnoff, Lawrence, Ham, Jong
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-04042013-111405/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0198 seconds