Water scarcity induced by drought, temperature, and salinity has plagued agricultural sustainability in recent years with unprecedented revenue losses, raising concerns for worldwide food security. Recent studies have revealed unique botanical response mechanisms to combat water related stress, namely the expression of proteins known as the dehydrins. Dehydrin proteins have been shown to serve various intracellular protective functions. The gene for a SK5 type dehydrin from the arctic plant Cerastium arcticum (CaDHN) was introduced into tobacco plants and water deficit tolerance was evaluated. Plants overexpressing CaDHN displayed improved tolerance to salt stress, but no improvement was observed under drought stress. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_32089 |
Contributors | Hill, William (author), Zhang, Xing-Hai (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Biological Sciences |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 63 p., application/pdf |
Rights | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds