Return to search

The role of glycolytic metabolism in fatty acid and glycerolipid biosynthesis in pea root plastids

The interaction between the glycolytic metabolism and fatty acid and glycerolipid biosynthesis in pea root (Pisum sativum L.) plastids was assessed in this study. When various glycolytic intermediates were used to substitute for the APT requirement for fatty acid synthesis from acetate, phosphoenolpyruvate, 2-phosphoglycerate, fructose-6-phosphate and glucose-6-phosphate each gave 48, 17, 23 and 17%, respectively, of the ATP-control activity. Similarly, in the absence of exogenously supplied ATP, the optimized triose-phosphate shuttle, which consists of 2 mM dihydroxyacetone phosphate, 2 mM oxaloacetic acid and 4 mM inorganic phosphate, gave up to 44% the ATP-control activity in promoting fatty acid synthesis from acetate. These results suggest that 3-phosphoglycerate kinase and pyruvate kinase in these plastids can function in intraplastidic ATP production through substrate level phosphorylation. However, in all cases, exogenously supplied ATP gave the greatest rates of fatty acid and glycerolipid synthesis. Radiolabeled pyruvate, glucose, glucose-6-phosphate, and malate in comparison to acetate were all variously utilized for fatty acid and glycerolipid biosynthesis by the root plastid. At the highest concentrations tested (3-5 mM), the rates of incorporation of pyruvate, glucose-6-phosphate and acetate into fatty acids were 183, 154, 125 nd 99 nmol $ rm cdot h sp{-1} cdot mg sp{-1}$, respectively. Malate was the least effective precursor, giving less than 55 nmol $ rm cdot h sp{-1} cdot mg sp{-1}$. Acetate incorporation was approximately 55% dependent on exogenously supplied reduced nuclotides (NADPH and NADH), whereas the utilization of the remaining precursors was only approximately 10-20% dependent on NAD(P)H. These results indicate that the entire pathway of carbon flow from glycolysis, including pyruvate dehydrogenase (PDHase), to fatty acids is operating in pea root plastids. Further, the intraplastidic glycolytic pathway plays an important role in provi

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.39980
Date January 1995
CreatorsQi, Qungang
ContributorsSparace, S. A. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Plant Science.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001488804, proquestno: NN12461, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds