[Truncated abstract] A greater adoption of stubble retention, minimum-till and no-till farming practices for the purposes of conserving soil, water and fertility requires a greater understanding of the complexity of physical and chemical interactions between the soil and crop residues. There is currently insufficient knowledge to allow reliable predictions of the effects of different residue types in different environments on soil fertility and crop growth, owing to the many residue characteristics and environmental interactions that have been shown to affect decomposition or nutrient release. The role of fibre and nutrient composition in nutrient release from crop residues, and implications for residue management techniques, were studied. Canola, lupin and field pea residues, obtained from farmland in Meckering and Northam, Western Australia, were separated into upper and basal stems, leaves, and siliques or pods. This was done to provide materials with a wide range of chemical and physical characteristics, and also allowed consideration of differential residue management of plant organs, such as comparing harvested canola siliques and retained canola stubble. Pre-treatment by chopping and/or humidification was applied to residues to provide some information about the processes of nutrient release. Residues were subjected to simulated rainfall to assess nutrient leaching from plant material, and placed on soil in pots in constant-temperature glasshouse conditions to assess decomposition. Amounts and rates of change of residue fibre and nutrients were determined throughout leaching and decomposition. Energy Dispersive X-ray (EDX) microanalysis was used to assess the location of diffusible ions in air-dried residues and the effects of humidification on nutrient positioning and release. ... However, the release of calcium and magnesium depended on the decomposition of the more recalcitrant components such as cellulose and lignin, as supported by microscopy results showing changes in nutrient distribution following humidification. The proportionality of amounts of calcium and magnesium leached and released during decomposition is likely to suggest a similarity of chemical form more than similarity of function or position of the two elements. Management of crop residues for maximising and optimising the timing of release of different nutrients will need to take into account the placement of different plant types and parts, particle sizes distribution and pre-treatment of material to efficiently manage short- and long-term soil fertility to sustain crops, particularly on degraded soils. Significant nutrient release of potassium, sulphur and magnesium from crop residues can be achieved from surface placement, with the release of potassium and sulphur managed by modifying residue particle size through appropriate harvesting, ploughing or sowing implement selection. High nutrient uptake crops and plant parts where they can be economically viable to grow or separated by the harvesting technique are particularly valuable as sources of nutrients and soil organic matter.
Identifer | oai:union.ndltd.org:ADTP/258959 |
Date | January 2009 |
Creators | Collins, Shane |
Publisher | University of Western Australia. School of Earth and Geographical Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Shane Collins, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.002 seconds