M.Sc. (Biochemistry) / Lipopolysaccharide (LPS) is a complex lipoglycan that is found in the outer membrane of Gram-negative bacteria and is composed of three regions namely the fatty acid Lipid A, a core region of short oligosaccharide chains and an O-antigen region of polysaccharides. When LPS is recognized as a microbe-/pathogen-associated molecular pattern (M/PAMP), it not only induces an innate immune response in plants but also stimulates the development of defence responses such as the immediate release of reactive oxygen species/intermediates (ROS/I), pathogen-related (PR) gene expression and activation of the hypersensitive response (HR), resulting in stronger subsequent pathogen interactions. The identification and characterisation of the elusive LPS receptor/receptor complex in plants is thus of importance, since understanding the mechanism of perception and specific signal transduction pathways will clarify, and lead to the advancement of, basal resistance in plants in order to decrease crop plant losses due to pathogen attack. In mammals, LPS binds to a LPS binding protein (LBP) to form a LPS-LBP complex which is translocated to myeloid differentiation 2 (MD2) with the presence/absence of its co-receptor, a glycosylphosphatidylinositol (GPI)-linked protein, CD14. The interaction occurs on the host membrane and triggers an inflammatory defence response through the signalling cascade activated by the interaction with Toll-like receptor 4 (TLR4). A similar LPS-receptor interaction is, however, unknown in plants. To address the LPS perception mechanism in plants, biological binding studies with regard to concentration, incubation time and temperature, affinity, specificity and saturation were conducted in Arabidopsis thaliana protoplasts using LPS labeled with Alexa 488 hydrazide. Quantum dots (Qdots), which allow non-covalent hydrophobic labeling of LPS, were further also employed in similar Arabidopsis protoplast binding studies. These studies were conducted by fluorescence determination through the use of a BD FACS Aria flow cytometer. Although Alexa-labeling does not affect the biological activity in mammalian studies, the same cannot necessarily be said for plant systems, and hence Qdots were included to address this question. The conjugation of Qdots to LPS was confirmed by transmission electron microscopy (TEM) and results illustrated higher fluorescence values as compared to Alexa-LPS fluorescence analysis. Furthermore, inhibition of the perception process is also reported using Wortmannin and Brefeldin A as suitable endo- and exocytosis inhibitors. Affinity, specificity and saturability as well as the role of endo- and exocytosis inhibition in LPS binding to protoplasts was ultimately demonstrated by both fluorophores, with the use of Qdots as a label proving to be a more sensitive strategy in comparison to the conventional Alexa 488 hydrazide label.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:7844 |
Date | 09 December 2013 |
Creators | Mgcina, Londiwe Siphephise |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Thesis |
Rights | University of Johannesburg |
Page generated in 0.002 seconds