Return to search

Arabidopsis LTP12, A Homolog of SIP470, As a Key Player in Biotic and Abiotic Stress Response Signaling Pathway

Lipid transfer proteins (LTPs) belong to the pathogenesis-related protein family (PR-14) and are thought to participate in plant defense mechanisms. In this study, we characterize the function of an Arabidopsis thaliana mutant ltp12 (AT3G51590), a homologous lipid transfer protein to SIP470 from Nicotiana tabacum for its role in abiotic and biotic stress. SIP470, a lipid transfer protein, was found to interact with SABP2 in a yeast-two hybrid screen. SABP2 in tobacco is required for inducing a robust SAR response. The objective of this research is to understand the role of LTP12 in mediating abiotic stress as salicylic acid plays an important role in both abiotic and biotic stress in plants. For this research, stressor chemicals, NaCl (salinity), mannitol (osmotic stress), and drought (no water or PEG) will be used. Seedlings were initially germinated and grown on artificial plant growth MS media. The similar-sized young seedlings were transferred to MS media plates supplemented with or without stressor chemicals. Oxidative stress analysis of various antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) will be performed. The Na+ homeostasis for salinity stress will be studied using CoroNaTM dye and confocal microscopy. Our lab has T-DNA insertion knockout mutants of LTP12 that we will be used in the proposed studies. Here, we hypothesize that mutant ltp12 plants will be hypersensitive to abiotic stressors like NaCl, mannitol, and drought, while wildtype Col-0 will be markedly more tolerant. Reports also suggest that knockout lines of other lipid transfer proteins show a defective growth phenotype and lower expression of systemic acquired resistance (SAR). Moreover, to gain a better understanding of both lines' responses to abiotic stress, we need to carry out further studies on the soil as well. The study will also discuss the subcellular localization of ltp12 in Arabidopsis, which will provide an idea of its functional mechanism. Understanding the role of lipid transfer proteins can lead to the development of transgenic plants that are more tolerant to abiotic stresses and climate change.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:asrf-2123
Date25 April 2023
CreatorsGiri, Bikram, Mr., Kumar, Dhirendra, Dr.
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAppalachian Student Research Forum

Page generated in 0.0021 seconds