<p> Ionizing radiation poses a significant challenge for human and robotic space missions. Practical luminescent sensors will depend heavily upon research investigating the resistance of these materials to ionizing radiation and the ability to anneal or self-heal the damage caused by such radiation. In 1951, Birks and Black experimentally showed that the luminescent efficiency of anthracene bombarded by alpha particles varies with total fluence. From 1990 to the present, we found that the Birks and Black relation describes the reduction in light emission yield for every tested luminescent material except lead phosphate glass due to proton irradiation. These results indicate that radiation produced quenching centers compete with emission for absorbed energy. The purpose of this thesis is to present new results from related luminescent materials by exposing them to a 1-3 MeV proton beam. Particular emphasis will be placed on recent measurements made with bright luminescent materials, such as zinc sulfide doped with manganese (ZnS:Mn), europium tetrakis dibenzoylmethide triethylammonium (EuD4TEA), an magnesium tetrakis dibenzoylmethide triethylammonium (MgD4TEA). This research can be used to help determine if luminescent materials can be used as a real-time sensor to detect ionizing radiation.</p>
Identifer | oai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10163329 |
Date | 01 December 2016 |
Creators | Williams, Stephen Alexander |
Publisher | University of Louisiana at Lafayette |
Source Sets | ProQuest.com |
Language | English |
Detected Language | English |
Type | thesis |
Page generated in 0.0019 seconds