This thesis demonstrates a measurement of a plasma fluctuation velocity-space cross-correlation matrix using laser induced fluorescence. The plasma fluctuation eigenmode structure on the ion velocity distribution function can be empirically determined through singular value decomposition from this measurement. This decomposition also gives the relative strengths of the modes as a function of frequency. Symmetry properties of the matrix quantify systematic error. The relation between the eigenmodes and plasma kinetic fluctuation modes is explored. A generalized wave admittance is calculated for these eigenmodes. Since the measurement is a localized technique, it may be applied to plasmas in which a single point measurement is possible, multipoint measurements may be difficult, and a velocity sensitive measurement technique is available.
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-7448 |
Date | 15 December 2017 |
Creators | Mattingly, Sean Walter |
Contributors | Skiff, Frederick N. |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | dissertation |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright © 2017 Sean Walter Mattingly |
Page generated in 0.0019 seconds