Return to search

Instability-Driven Limits on Ion Temperature Anisotropy in the Solar Wind: Observations and Linear Vlasov Theory

Kinetic microinstabilities in the solar wind arise when its non-thermal properties become too extreme. This thesis project focused specifically on the four instabilities associated with ion temperature anisotropy: the cyclotron, mirror, and parallel and oblique firehose instabilities. Numerous studies have provided evidence that proton temperature anisotropy in the solar wind is limited by the actions of these instabilities. For this project, a fully revised analysis of data from the Wind spacecraft's Faraday cups and calculations from linear Vlasov theory were used to extend these findings in two respects. First, theoretical thresholds were derived for the \(\alpha\)-particle temperature anisotropy instabilities, which were then found to be consistent with a statistical analysis of Wind \(\alpha\)-particle data. This suggests that \(\alpha\)-particles, which constitute only about 5% of ions in the solar wind, are nevertheless able to drive temperature anisotropy instabilities. Second, a statistical analysis of Wind proton data found that proton temperature was significantly enhanced in plasma unstable due to proton temperature anisotropy. This implies that extreme proton temperature anisotropies in solar wind at 1 AU arise from ongoing anisotropic heating (versus cooling from, e.g., CGL double adiabatic expansion). Together, these results provide further insight into the complex evolution of the solar wind's non-fluid properties. / Astronomy

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/9547903
Date12 September 2012
CreatorsMaruca, Bennett Andrew
ContributorsKasper, Justin C.
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0013 seconds