Return to search

Repurposing of Human Protein Kinase Inhibitors Identifies Dual Stage Active Antimalarials

Malaria, a disease caused by members of the Plasmodium genus, remains a threat to global health. Despite the availability of therapeutics, Plasmodium's propensity for generating resistance-conferring mutations threatens the efficacy of these drugs. Therefore, it is essential to develop novel therapeutics, and one approach to discover such compounds is to repurpose current drugs as antimalarials. Human kinase inhibitors, most of which are developed as antineoplastics, are a valuable source of such novel compounds. Human kinase inhibitor research spans over twenty years, generating a wellspring of knowledge regarding compound design, mechanism, and tolerability that can be leveraged in the quest to develop new antiplasmodial drugs. Furthermore, the plasmodial kinome differs substantially from the human kinome, providing opportunities for selectivity and minimization of off-target effects in the host. To this end, we sought to identify and characterize compounds within human kinase inhibitor collections that have antiplasmodial effects. One library yielded a potent polo-like kinase 1 (PLK1) kinase inhibitor, BI-2536, which possessed potent antiplasmodial activity in both the asexual blood stage and liver stage and likely acts through involvement of amino acid starvation. Another library comprised exclusively of type II kinase inhibitors, designed to target kinases in the inactive conformation, produced several interesting lead compounds – TL5-135, YLIU-06-026-1, and the analog pair XMD13-99 and WZ9-034-2. These compounds were highly active against asexual blood stage parasites, killing rapidly while also possessing favorable selectivity and liver stage activity. In vivo, TL5-135 and YLIU-06-026-1 acted prophylactically by preventing infection, and therapeutically by resolving an established infection. Currently, investigations are underway to determine the mechanism of action of the lead compounds and to improve their druglike properties. In whole, this effort has not only yielded promising antiplasmodial compounds, but it also underscores the value of the repurposing approach in the quest for novel antimalarial drugs.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1004
Date01 January 2023
CreatorsBohmer, Monica J
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Thesis and Dissertation 2023-2024

Page generated in 0.0018 seconds