Return to search

Identification of Host and Parasite Factors Mediating the Pathogenesis of Severe and Cerebral Malaria

Severe manifestations of malaria, including cerebral malaria (CM) and respiratory distress, result in approximately three million deaths annually worldwide. Currently, relatively little is known about severe disease pathogenesis. The development and outcome of severe malaria is determined by host-pathogen interactions, a complex interface of genetics and immune responses. Hypothetically, a spectrum of genetic susceptibility and resistance to severe disease exists within the host population, and malaria infection results in diverse host and parasite responses that impact disease outcome. The aim of this study was to identify differential host and parasite responses in a murine model of severe malaria, Plasmodium berghei ANKA (PbA), in CM-susceptible and CM-resistant mice; and to analyze host genetics in patients with severe disease due to Plasmodium falciparum.

In vivo, expression microarray analysis showed that, in malaria target organs, differential responses were related to immune response – primarily interferon and complement pathways – and apoptosis. Histopathological examination of the brain confirmed an increased prevalence of apoptosis in CM-susceptible mice. Further examination of the role of complement in CM-susceptibility determined that early complement 5 (C5) activation conferred susceptibility to CM, and that C5 deficiency conferred resistance, which could be recapitulated by antibody blockade of activated C5 or its receptor in susceptible mice. Additionally, single nucleotide polymorphism (SNP) studies identified that complement receptor 1 SNPs were associated with disease severity in patients with P. falciparum malaria. PbA parasites displayed a unique transcriptional signature in each tissue examined (brain, liver, spleen and lung), showed differential gene expression between CM-resistant and susceptible hosts, and were most prominent in lung tissue. Closer examination of lung involvement in PbA infection revealed that PbA-infected C57BL/6 mice develop acute lung injury (ALI), defined by disruption of the alveolar-capillary membrane barrier. ALI susceptibility did not correlate with CM susceptibility, but was influenced by peripheral parasite burden and CD36-mediated parasite sequestration in the lung.

PbA provides a clinically relevant experimental model for CM and ALI, through which important disease mechanisms can be identified and modulated. Ideally, the use of such models aids in the discovery of disease biomarkers and novel therapeutic strategies, which may be applied to human severe and cerebral malaria.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/11228
Date31 July 2008
CreatorsLovegrove, Fiona
ContributorsKain, Kevin C.
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis
Format12859427 bytes, application/pdf

Page generated in 0.0017 seconds