Thesis advisor: Michael J. Naughton / Nanoscale biosensing devices improve and enable detection mechanisms by taking advantage of properties inherent to nanoscale structures. This thesis primarily describes the development, characterization and application of two such nanoscale structures. Namely, these two biosensing devices discussed herein are (1) an extended-core coaxial nanogap electrode array, the ‘ECC’ and (2) a plasmonic resonance optical filter array, the ‘plasmonic halo’. For the former project, I discuss the materials and processing considerations that were involved in the making of the ECC device, including the nanoscale fabrication, experimental apparatuses, and the chemical and biological materials involved. I summarize the ECC sensitivity that was superior to those of conventional detection methods and proof-of-concept bio-functionalization of the sensing device. For the latter project, I discuss the path of designing a biosensing device based on the plasmonic properties observed in the plasmonic halo, including the plasmonic structures, materials, fabrication, experimental equipment, and the biological materials and protocols. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
Identifer | oai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_108627 |
Date | January 2019 |
Creators | D'Imperio, Luke A. |
Publisher | Boston College |
Source Sets | Boston College |
Language | English |
Detected Language | English |
Type | Text, thesis |
Format | electronic, application/pdf |
Rights | Copyright is held by the author, with all rights reserved, unless otherwise noted. |
Page generated in 0.0085 seconds