Return to search

Technologie et étude de résonateurs plasmoniques à base d'InAsSb : vers une plasmonique tout semi-conducteur / Study and technology of InAsSb-based plasmonic resonators : towards semi-conductor plasmonics

Les plasmons de surface sont des quasi-particules résultant du couplage fort entre l'oscillation collective des porteurs libres d'un métal (plasma) et une onde électromagnétique. Ils sont générés à l'interface entre un métal et un diélectrique. Ils sont étudiés depuis plusieurs années pour leurs propriétés remarquables de confinement du champ électromagnétique à l'interface ou encore d'exaltation de ce même champ. Les plasmons de surface (SPP) sont à la base de la plasmonique, domaine qui exploite leurs propriétés optiques. L'une des caractéristiques principales des SPP est la fréquence plasma. Elle est proportionnelle à la densité de porteurs libres. La majorité des travaux effectués en plasmonique concerne les métaux nobles comme l'or ou l'argent. Cependant, leur utilisation est délicate dans certaines gammes de longueurs d'onde, telle que l'infrarouge, lorsqu'il est nécessaire d'exploiter l'exaltation du champ électrique pour la détection de molécules en biologie. Pour contrôler au mieux cet effet d'exaltation du champ électrique, il est nécessaire d'ajuster la fréquence plasma. Cela impossible pour les métaux nobles qui sont par ailleurs incompatibles avec les procédés actuels de la microélectronique. L'utilisation de semi-conducteurs fortement dopés en plasmonique permet de contourner ces limitations. En changeant le dopage ou le type de semi-conducteur, il est possible de changer la fréquence plasma du matériau et ainsi, d'obtenir des résonances plasmoniques dans le moyen infrarouge. Mon travail de thèse concerne la réalisation et la caractérisation de réseaux plasmoniques à base semi-conducteurs dopés. Les échantillons sont constitués d'une couche d'InAsSb (antimoniure d'arséniure et d'indium) dopée au silicium. Cette couche est déposée par épitaxie par jets moléculaires (MBE) sur un substrat de GaSb (antimoniure de gallium). Dans un premier temps j'ai mis au point un moyen de caractérisation rapide et non destructif du niveau de dopage dans les couches d'InAsSb et donc de la fréquence plasma, basé sur la réflectivité en angle. Un modèle théorique basé sur le mode de Brewster m'a permis d'expliquer les résultats expérimentaux. J'ai ensuite mis au point les étapes technologiques permettant de réaliser les rubans d'InAsSb. Elles sont basées sur de la lithographie interférentielle, la gravure chimique humide et la gravure sèche par plasma. En modifiant les dimensions du réseau, j'ai démontré la possibilité de contrôler les propriétés optiques des résonateurs plasmoniques. Enfin, nous avons fabriqué des réseaux d'InAsSb enterrés, en procédant à une reprise d'épitaxie par MBE d'une couche de GaSb sur le réseau InAsSb. Nous arrivons ainsi à planariser la structure en conservant sa cristallinité. J'ai donc démontré qu'il était possible d'intégrer des structures plasmoniques à des composants photoniques opérant dans l'infrarouge en utilisant seulement des semi-conducteurs. La voie est ouverte pour le développement d'une plasmonique infrarouge tout-semi-conducteurs. Mon travail de thèse est pionnier dans ce domaine. / Surface plasmons polaritons (SPP) are quasi-particles resulting from the strong coupling between the collective oscillations of free carriers in a metal and an electromagnetic wave. They are generated at the interface between a metal and a dielectric. They are studied in detail for several years for their outstanding properties of electromagnetic field confinement at the interface or of filed exaltation. SPP are the building blocks of plasmonics, the area that exploit their optical properties. One of the main characteristics of the SPP is the plasma frequency which is proportional to the density of free carriers. Plasmonics is essentially based on noble metals like gold or silver. However, noble metals are difficult to use in certain ranges of wavelengths, such as infrared, to exploit the electric field exaltation for the detection of molecules in biology. To improve the control of this electric field exaltation, it is necessary to adjust the plasma frequency. It impossible with noble metals that are otherwise incompatible with current microelectronics processes. To overcome these limitations we propose to use heavily doped semiconductors. By changing the doping or the type of the semiconductor, it is possible to change the plasma frequency and thus obtain plasmonic resonances in the mid-infrared. My work deals with the realization and the characterization of doped semiconductors plasmonic gratings. The samples consist of an InAsSb (indium, arsenide, antimonide) layer doped with silicon. This layer is deposited by molecular beam epitaxy (MBE) on a GaSb substrate (gallium antimonide). I have developed an experimental technique based angular dependent reflectivity of rapid and non-destructive characterization of the doping level in the InAsSb layers and thus the plasma frequency. A theoretical model based on Brewster modes allowed explaining the experimental results. I then developed a technological process to achieve the InAsSb gratings. They are based on interference lithography, chemical wet etching and dry plasma etching. By changing the size of the grating, I have demonstrated the ability to control the optical properties of plasmonic resonators. Finally, we have made of InAsSb grating buried into a GaSb layer, using a regrowth by MBE technique. The structure is planarized with a good crystallinity. So it is possible to integrate plasmonic resonators nearby photonic compounds operating in the infrared using only semiconductors. We pave the way for the development of all-semiconductor infrared plasmonics. My thesis is a pioneer work in this field.

Identiferoai:union.ndltd.org:theses.fr/2013MON20240
Date20 December 2013
CreatorsNtsame Guilengui, Vilianne
ContributorsMontpellier 2, Taliercio, Thierry
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0116 seconds