Shape memory polymer (SMP) materials have the ability to remain in a deformed state and then recover their initial/cast shape. This property has significant potential in many different fields, including aerospace and bio-medical, in which a shape change is desirable and actuation may not be required. SMP materials have been made into nano-reinforced composites and also foamed to improve desired properties for specific applications. SMP foams offer two clear advantages over non-foam SMP materials in applications for the biomedical and aerospace fields. The key advantages are lower density and significant compressibility. The significance of this is that components made out of SMP foam are lighter than traditional SMP materials, more compressible and exhibit minimal transverse change during deformation and shape recovery. This increases the performance and efficiency of devices using SMP foam material.
The need for a set of design criteria, models, and limits for the use of shape memory polymer foams was proposed. The effect of temperature and strain on the mechanical behavior, compression, tensile, cyclic compression, constrained recovery and free strain recovery of the material was used to determine the operational limits of the material. Next, the damage mechanism and viscoelastic effects in compressive cycling were determined through further mechanical testing and with the incorporation of three dimensional structure mapping via micro-CT scanning. The influence of microstructure was determined by testing the basic thermomechanical, viscoelastic and shape recovery behavior of foams with relative densities of 20, 30 and 40 percent. A similar suite of tests was then performed on the base epoxy material to generate the material properties necessary to fit constitutive equations to enable computational modeling. This data was then combined with three dimensional microstructures generated from micro-CT scans to develop material models for shape memory foams. These models were then validated by comparing model results to the experimental results under similar conditions.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/28178 |
Date | 31 March 2009 |
Creators | Di Prima, Matthew Allen |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0019 seconds