Return to search

Development of Catalytic Strategies for Chemical Recycling of Polymer:

Thesis advisor: Jeffery A. Byers / This dissertation discusses the development of catalytic systems within the context of polymer synthesis and functionalization towards the fulfillment of circular plastic economy. Chapter 1 provides an overview of the limitations of the current mechanical recycling for plastic disposal and two general ways to improve the current system by chemical strategies. Chapter 2 discusses the development of a chemically recyclable thermoplastic elastomer derived from relatively cheap feedstock using redox-switchable polymerization. Chapter 3 describes the application of C-H activation and cross-coupling strategy on commodity polyolefins and the effect on the polymer physiochemical properties by the introduction of functional groups, which has the potential to serve in polymer upcycling. Chapter 4 describes the dehydrogenation of polyethylene (PE) and polypropylene (PP) along with further functionalization of the unsaturated product to demonstrate a route of synthesizing PE/PP compatibilizers from plastic waste. Chapter 5 summarizes our development of simulation-based methods to obtain kinetic information of transition-metal catalyzed copolymerization that may include reversible propagation. / Thesis (PhD) — Boston College, 2024. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_110052
Date January 2024
CreatorsLiu, Jiangwei
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.1021 seconds