In this work, we present the formulation and implementation of two elastoplastic constitutive equations for kinematically exact thin-walled rod models. The first uses the fact that first order strains due to cross sectional shear stresses and warping are considered to formulate a small strains three-dimensional elastoplastic constitutive model. Given the kinematical hypothesis of non-deformability of the cross section in the projection of its plane, we may also assume that plastic deformations may occur due only to the cross sectional normal stresses, thereby allowing us to formulate a second, simple one-dimensional framework. Our approach adopts a standard additive decomposition of the strains together with a linear elastic relation for the elastic part of the deformation. Both ideal plasticity and plasticity with (linear) isotropic hardening are considered. The models have a computational implementation within a finite element thin-walled rod model and, following the kinematics adopted, we implement this equation on models with consideration of the warping of the cross sections, having 7 degrees of freedom. The formulation and implementation presented is validated by the analysis of problems known in the literature and comparison of the results. We believe that simple elastoplastic models combined with robust thin-walled rod finite element may be a useful tool for the analysis of thin-walled rod structures, such as, e.g., steel structures. / Neste trabalho, apresentamos a formulação e implementação de duas equações constitutivas elastoplásticas simples para modelos de barra de parede fina cinematicamente exatos. O primeiro usa o fato de deformações de primeira ordem devido a esforço cortante na seção transversal e empenamento serem considerados para formular um modelo constitutivo elastoplástico tridimensional para pequenas deformações. Dada a hipótese cinemática de não deformabilidade da seção transversal da barra na projeção de seu plano, podemos também assumir que deformações plásticas ocorrem devido apenas às tensões normais à seção transversal, nos permitindo formular um segundo modelo unidimensional simples. Nossa abordagem adota uma decomposição aditiva padrão das deformações com uma relação elástica linear para a parte elástica das deformações. Tanto plasticidade ideal quanto plasticidade com encruamento isótropo (linear) são considerados. Os modelos resultantes têm uma implementação computacional com elementos finitos de barras e, de acordo com a cinemática adotada, implementamos esta equação com consideração do empenamento das seções transversais, possuindo 7 graus de liberdade. A formulação e implementação apresentadas são validadas pela análise de problemas conhecidos na literatura e comparação dos resultados. Acreditamos que modelos elastoplásticos simples combinados com um elemento finito de barras robusto podem ser uma ferramenta útil para a análise de estruturas reticuladas como, por exemplo, estruturas de aço.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-05122017-134523 |
Date | 19 September 2017 |
Creators | Yuri Teixeira e Sousa |
Contributors | Eduardo de Morais Barreto Campello, Humberto Breves Coda, Eduardo Alberto Fancello |
Publisher | Universidade de São Paulo, Engenharia Civil, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds