Return to search

Modélisation de la plasticité cristalline et de la migration des joints de grains de l'acier 304L à l'échelle mésoscopique / Modelling of crystal plasticity and grain boundary migration of 304L steel at the mesoscopic scale

Les propriétés des matériaux métalliques sont très liées à leurs caractéristiques microstructurales. Par exemple il est bien connu que la taille de grains joue sur la limite élastique du matériau ainsi que sur ses capacités d'écrouissage. Ainsi, la compréhension et la modélisation de l'évolution de la microstructure d'un métal pendant un traitement thermomécanique est d'une importance primordiale afin de prédire finement son comportement ainsi que ses propriétés finales. Dans le cadre de cette thèse, nous nous sommes concentrés sur la modélisation, à l'échelle d'un agrégat polycristallin, de la plasticité cristalline, de la recristallisation statique et de la croissance des grains dans un contexte de mobilité et d'énergie d'interface isotrope. Un modèle à champ complet dans un cadre éléments finis (EF) est proposé. Les grains sont représentés grâce à un formalisme level-set. L'étude EF développée peut être divisée en trois grandes parties: la génération statistique de microstructures digitales, la modélisation de la plasticité cristalline et la modélisation de la migration des joins de grains en régime de recristallisation statique. Concernant la génération statistique des microstructures digitales, une étude comparative entre deux méthodes de génération (Voronoï et Laguerre-Voronoï) a été réalisée. La capacité de la deuxième approche à respecter une microstructure basée sur des données expérimentales est mise en valeur en 2D et en 3D. Dans une deuxième étape, la plasticité cristalline des matériaux métalliques est étudiée. Deux modèles d'écrouissage ont été implémentés et validés : un premier modèle considérant uniquement les densités de dislocations totales, et un deuxième modèle différenciant les dislocations statistiquement stockées (SSDs) des dislocations géométriquement nécessaires (GNDs). Afin de valider l'implémentation de ces deux modèles issus de la littérature deux cas ont été étudiés : le premier correspond à l'étude à chaud d'un essai de compression plane d'un acier 304L, et le deuxième correspond à l'étude d'un essai à froid de compression simple d'un oligocristal de tantale composé de 6 grains. Les résultats numériques obtenus sont comparés avec les données expérimentales des deux essais. La migration des joints de grains est étudiée dans le contexte des régimes de recristallisation statique et de croissance de grains. Par rapport aux travaux pre-existants dans un cadre level-set, l'accent est mis sur la prise en compte des forces capillaires. La croissance des grains pure est en effet développée dans le formalisme éléments finis/level set considéré, et des validations à partir de résultats analytiques connus sont présentées. De plus, un travail d'analyse de modèles de croissance des grains à champ moyen existant dans la littérature est réalisé. Deux modèles en particuliers sont étudiés : celui de Burke et Turnbull et celui de Hillert/Abbruzzese. En comparant ces modèles avec les résultats obtenus par l'approche en champ complet développée, il est mis en évidence que le modèle simple de Burke et Turnbull n'est pas approprié pour décrire la croissance de grains pour tout type de distribution initiale de taille de grains. La recristallisation statique est ensuite abordée, avec une prise en compte des deux forces motrices liées (i) aux gradients d'énergies stockées sous la forme de dislocations, et (ii) aux effets capillaires. L'influence des effets de capillarité apparaît comme fortement liée à la distribution spatiale des nouveaux germes. Finalement, les résultats des simulations réalisées en plasticité cristalline sont utilisés comme données d'entrée du modèle de recristallisation statique développé. La comparaison des prédictions obtenues comparativement aux résultats expérimentaux sur 304L permet d'illustrer la pertinence d'une approche de type SSD/GND afin de prédire les sites de germination potentiels. / Mechanical and functional properties of metals are strongly related to their microstructures, which are themselves inherited from thermal and mechanical processing. For example, the material grain size distribution plays an important role on the material yield limit and work hardening. The understanding of these microstructure evolutions during thermo-mechanical processes is of prime importance for a better prediction and control of the material mechanical properties. During this Ph.D., we have worked on the modelling of crystal plasticity, static recrystallization and grain growth at the mesoscopic scale in the context of isotropic mobility and interface energy. The full field model developed is based on a finite element formulation combined with a level set framework used to describe the granular structure. This Ph.D. thesis is divided in three main parts: statistical generation of digital microstructures, crystal plasticity modelling and grain boundary migration modelling. In what concerns the digital microstructures statistical generation, a comparative study between two methods (Voronoï and Laguerre-Voronoï) is presented. The ability of the second approach to respect a given grain size distribution is highlighted in 2D and 3D. Secondly, the metallic materials crystal plasticity is studied. Two hardening laws have been implemented and validated: the first one considering the total dislocation density and a second one that differentiates the statistically stored dislocations (SSD) from geometrically necessary dislocations (GNDs). Two different tests cases are used in order to validate the implementation of both hardening laws in the considered crystal plasticity model. The first one corresponds to a planar hot compression test (channel die test) on a 304L stainless steel whereas the second one corresponds to a simple cold compression test on a tantalum olygocrystal composed by six different grains. The obtained results are compared to experimental data for both cases. Grain boundary migration is studied for static recrystallization and grain growth phenomena. Compared to previous work in the considered level-set framework, the focus is on the consideration of capillary forces. Indeed pure grain growth is developed in the considered finite elements/level set formalism and this algorithm is validated using well-known analytical results. Moreover, the results of the developed full field grain growth model are compared in 2D with several well-known mean field grain growth models (Burke and Turbull model and Hillert/Abbruzzese model). The results obtained illustrate that only the Hillert/Abbruzzese model accurately describes grain growth kinetics for all initial grain size distributions. The validity of the Burke and Turnbull model is, on the contrary, restricted to specific distributions. Static recrystallization is then discussed considering both driving forces: (i) internal energy gradient and (ii) grain boundaries capillarity effects. The influence of capillary effects appears to be strongly related to the spatial distribution of the new grains. Finally, the crystal plasticity numerical results are used as input data of the developed static recrystallization full field model. The comparison of the numerical predictions obtained with 304L experimental results allows illustrating the relevance of the SSDs/GNDs formalism used concerning the prediction of the nuclei potential position.

Identiferoai:union.ndltd.org:theses.fr/2013ENMP0088
Date10 December 2013
CreatorsCruz Fabiano, Ana Laura
ContributorsParis, ENMP, Logé, Roland
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds