The objective of this thesis is to develop a sequential algorithm to determine accurately and quickly, at which point in time a product is well mixed or reaches a steady state plateau, in terms of the Refractive Index (RI). An algorithm using sequential non-linear model fitting and prediction is proposed. A simulation study representing typical scenarios in a liquid manufacturing process in pharmaceutical industries was performed to evaluate the proposed algorithm. The data simulated included autocorrelated normal errors and used the Gompertz model. A set of 27 different combinations of the parameters of the Gompertz function were considered. The results from the simulation study suggest that the algorithm is insensitive to the functional form and achieves the goal consistently with least number of time points.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2930 |
Date | 28 July 2009 |
Creators | Saxena, Akriti |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0019 seconds