Platelets are small anucleate cell fragments found in blood whose physiological role is important in maintaining haemostasis. In vivo, platelet surface glycoproteins mediate the mechanistic roles of platelets, and polymorphic changes to these glycoproteins have been observed to have significant effects on the platelet cellular function and such changes may include over-expression, under-expression and antigenicity of the protein. Human platelet antigens (HPA) are a result of polymorphic differences in platelet surface glycoproteins which have been found to be variably expressed in the population. Foetal maternal alloimmune thrombocytopaenia (FMAIT) is a condition that is observed in the unborn foetus and neonates due to HPA incompatibility between the mother and the foetus. HPA incompatibility accounts for a majority of severe thrombocytopaenic cases in neonates, and delayed diagnosis and treatment of such a condition often lead to intracranial haemorrhage. The risk in neonates diagnosed with FMAIT becomes increasingly significant in cases where intra-uterine (during pregnancy) platelet transfusion is the only effective therapeutic option. There are currently no antenatal screening programs for this condition, and laboratory diagnosis of FMAIT relies on the detection of maternal alloantibodies and parental HPA typing. For these reasons a significant amount of research is currently being invested into the isolation of recombinant antibodies with specific reactivity against FMAIT-related platelet antigens. Stable and specific recombinant platelet antibodies have great potential as a diagnostic agent in antenatal screening and broad-scale HPA typing of blood donors for platelet transfusion. Further characterisation of the isolated antibody may lead to a possible therapeutic agent. Studies by previous researchers have shown that the traditional methods (ie. Mouse monoclonal and EBV transformation) of obtaining monoclonal antibodies against FMAIT-related antigens have proven unsuccessful. The continuing progress in the discipline of phage display has produced several novel antibodies against self and non-self antigens. A further advantage in the application of phage display technology for the isolation of novel antibodies is the easy transition from bacterial to mammalian expression for the characterisation of glycosylated antibodies. The main focus of this project was to create and isolate a recombinant human anti-HPA-3a antibody using phage display for its possible application as a therapeutic or diagnostic agent.
Identifer | oai:union.ndltd.org:ADTP/257776 |
Date | January 2007 |
Creators | De Leon, Ellen Jane, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW |
Publisher | Awarded by:University of New South Wales. |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Ellen Jane De Leon, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0014 seconds