Return to search

Super finite elements for nonlinear static and dynamic analysis of stiffened plate structures

The analysis of stiffened plate structures subject to complex loads such as air-blast pressure waves from external or internal explosions, water waves, collisions or simply large static loads is still considered a difficult task. The associated response is highly nonlinear and although it can be solved with currently available commercial finite element programs, the modelling requires many elements with a huge amount of input data and very expensive computer runs. Hence this type of analysis is impractical at the preliminary design stage. The present work is aimed at improving this situation by introducing a new philosophy. That is, a new formulation is developed which is capable of representing the overall response of the complete structure with reasonable accuracy but with a sacrifice in local detailed accuracy. The resulting modelling is relatively simple thereby requiring much reduced data input and run times. It now becomes feasible to carry out design oriented response analyses.
Based on the above philosophy, new plate and stiffener beam finite elements are developed for the nonlinear static and dynamic analysis of stiffened plate structures. The elements are specially designed to contain all the basic modes of deformation response which occur in stiffened plates and are called super finite elements since only one plate element per bay or one beam element per span is needed to achieve engineering design level accuracy at minimum cost. Rectangular plate elements are used so that orthogonally stiffened plates can be modelled.
The von Karman large deflection theory is used to model the nonlinear geometric behaviour. Material nonlinearities are modelled by von Mises yield criterion and associated flow rule using a bi-linear stress-strain law. The finite element equations are derived using the virtual work principle and the matrix quantities are evaluated by

Gauss quadrature. Temporal integration is carried out using the Newmark-β method with Newton-Raphson iteration for the nonlinear equations at each time step.
A computer code has been written to implement the theory and this has been applied to the static, vibration and transient analysis of unstiffened plates, beams and plates stiffened in one or two orthogonal directions. Good approximations have been obtained for both linear and nonlinear problems with only one element representations for each plate bay or beam span with significant savings in computing time and costs. The displacement and stress responses obtained from the present analysis compare well with experimental, analytical or other numerical results. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/30723
Date January 1990
CreatorsKoko, Tamunoiyala Stanley
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0155 seconds